的含义及其表示教学设计

学习网

集合的含义及其表示教学设计

教学目标:

1.使学生理解集合的含义,知道常用集合及其记法;

2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;

3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合.

教学重点:

集合的含义及表示方法.

教学过程:

一、问题情境

1.情境.

新生自我介绍:介绍家庭、原毕业学校、班级.

2.问题.

在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生×××”相比,它们有什么共同的特征?

二、学生活动

1.介绍自己;

2.列举生活中的集合实例;

3.分析、概括各集合实例的共同特征.

三、数学建构

1.集合的含义:一般地,一定范围内不同的、确定的.对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.

2.元素与集合的关系及符号表示:属于,不属于.

3.集合的表示方法:

另集合一般可用大写的拉丁字母简记为“集合A、集合B”.

4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.

5.有限集,无限集与空集.

6.有关集合知识的历史简介.

四、数学运用

1.例题.

例1 表示出下列集合:

(1)中国的直辖市;(2)中国国旗上的颜色.

小结:集合的确定性和无序性

例2 准确表示出下列集合:

(1)方程x2―2x-3=0的解集;

(2)不等式2-x<0的解集;

(3)不等式组 的解集;

(4)不等式组 2x-1≤-33x+1≥0的解集.

解:略.

小结:(1)集合的表示方法——列举法与描述法;

(2)集合的分类——有限集⑴,无限集⑵与⑶,空集⑷

例3 将下列用描述法表示的集合改为列举法表示:

(1){(x,)| x+ = 3,x N, N }

(2){(x,)| = x2-1,|x |≤2,x Z }

(3){| x+ = 3,x N, N }

(4){ x R | x3-2x2+x=0}

小结:常用数集的记法与作用.

例4 完成下列各题:

(1)若集合A={ x|ax+1=0}=,求实数a的值;

(2)若-3{ a-3,2a-1,a2-4},求实数a.

小结:集合与元素之间的关系.

2.练习:

(1)用列举法表示下列集合:

①{ x|x+1=0};

②{ x|x为15的正约数};

③{ x|x 为不大于10的正偶数};

④{(x,)|x+=2且x-2=4};

⑤{(x,)|x∈{1,2},∈{1,3}};

⑥{(x,)|3x+2=16,x∈N,∈N}.

(2)用描述法表示下列集合:

①奇数的集合;②正偶数的集合;③{1,4,7,10,13}

五、回顾小结

(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;

(2)集合的表示——列举法、描述法以及Venn图;

(3)集合的元素与元素的个数;

(4)常用数集的记法.

六、作业

课本第7页练习3,4两题.

相关文章!
  • 知识竞赛主持词10篇

    知识竞赛主持词10篇一、什么是主持词主持词,又叫串连词,串联词,串词。主持词是在晚会、联欢会等大型联欢活动中,主持人把前后节目,把整台

  • 适合朗诵的诗歌

    适合朗诵的诗歌在平平淡淡的日常中,大家一定都接触过一些使用较为普遍的诗歌吧,诗歌节奏上鲜明有序,音谐韵美。究竟什么样的诗歌才是好

  • 适合小学生朗诵的诗歌

    适合小学生朗诵的诗歌汇总在学习、工作乃至生活中,大家最不陌生的就是诗歌了吧,诗歌的内容是社会生活的最集中的反映。你所见过的诗歌是