标题 | 因式分解教案 |
范文 | 因式分解教案 在教学工作者实际的教学活动中,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?以下是小编为大家整理的因式分解教案,欢迎阅读与收藏。 因式分解教案1(一)学习目标 1、会用因式分解进行简单的多项式除法 2、会用因式分解解简单的方程 (二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。 难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。 (三)教学过程设计 看一看 1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤: ①________________②__________ 2.应用因式分解解简单的一元二次方程. 依据__________,一般步骤:__________ 做一做 1.计算: (1)(-a2b2+16)÷(4-ab); (2)(18x2-12xy+2y2)÷(3x-y). 2.解下列方程: (1)3x2+5x=0; (2)9x2=(x-2)2; (3)x2-x+=0. 3.完成课后练习题 想一想 你还有哪些地方不是很懂?请写出来。 ____________________________________ (四)预习检测 1.计算: 2.先请同学们思考、讨论以下问题: (1)如果A×5=0,那么A的值 (2)如果A×0=0,那么A的值 (3)如果AB=0,下列结论中哪个正确( ) ①A、B同时都为零,即A=0, 且B=0; ②A、B中至少有一个为零,即A=0,或B=0; (五)应用探究 1.解下列方程 2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值 (六)拓展提高: 解方程: 1、(x2+4)2-16x2=0 2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零? (七)堂堂清练习 1.计算 2.解下列方程 ①7x2+2x=0 ②x2+2x+1=0 ③x2=(2x-5)2 ④x2+3x=4x 因式分解教案2教学目标 1.知识与技能 了解因式分解的意义,以及它与整式乘法的关系. 2.过程与方法 经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用. 3.情感、态度与价值观 在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值. 重、难点与关键 1.重点:了解因式分解的意义,感受其作用. 2.难点:整式乘法与因式分解之间的关系. 3.关键:通过分解因数引入到分解因式,并进行类比,加深理解. 教学方法 采用“激趣导学”的教学方法. 教学过程 一、创设情境,激趣导入 【问题牵引】 请同学们探究下面的2个问题: 问题1:720能被哪些数整除?谈谈你的想法. 问题2:当a=102,b=98时,求a2-b2的值. 二、丰富联想,展示思维 探索:你会做下面的填空吗? 1.ma+mb+mc=( )( ); 2.x2-4=( )( ); 3.x2-2xy+y2=( )2. 【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式. 三、小组活动,共同探究 【问题牵引】 (1)下列各式从左到右的变形是否为因式分解: ①(x+1)(x-1)=x2-1; ②a2-1+b2=(a+1)(a-1)+b2; ③7x-7=7(x-1). (2)在下列括号里,填上适当的项,使等式成立. ①9x2(______)+y2=(3x+y)(_______); ②x2-4xy+(_______)=(x-_______)2. 四、随堂练习,巩固深化 课本练习. 【探研时空】计算:993-99能被100整除吗? 五、课堂总结,发展潜能 由学生自己进行小结,教师提出如下纲目: 1.什么叫因式分解? 2.因式分解与整式运算有何区别? 六、布置作业,专题突破 选用补充作业. 板书设计 15.4.1 因式分解 1、因式分解 例: 练习: 15.4.2 提公因式法 教学目标 1.知识与技能 能确定多项式各项的公因式,会用提公因式法把多项式分解因式. 2.过程与方法 使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 3.情感、态度与价值观 培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值. 重、难点与关键 1.重点:掌握用提公因式法把多项式分解因式. 2.难点:正确地确定多项式的最大公因式. 3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 教学方法 采用“启发式”教学方法. 教学过程 一、回顾交流,导入新知 【复习交流】 下列从左到右的变形是否是因式分解,为什么? (1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t); (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my; (5)x2-2xy+y2=(x-y)2. 问题: 1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz-y呢? 请将上述多项式分别写成两个因式的乘积的形式,并说明理由. 【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y. 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法. 二、小组合作,探究方法 【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么? 【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂. 三、范例学习,应用所学 【例1】把-4x2yz-12xy2z+4xyz分解因式. 解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x+3y-1) 【例2】分解因式,3a2(x-y)3-4b2(y-x)2 【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法. 解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-[(y-x)23a2(y-x)+4b2(y-x)2] =-(y-x)2 [3a2(y-x)+4b2] =-(y-x)2(3a2y-3a2x+4b2) 解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)23a2(x-y)-4b2(x-y)2 =(x-y)2 [3a2(x-y)-4b2] =(x-y)2(3a2x-3a2y-4b2) 【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12. 【教师活动】引导学生观察并分析怎样计算更为简便. 解:0.84×12+12×0.6-0.44×12 =12×(0.84+0.6-0.44) =12×1=12. 【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同? 四、随堂练习,巩固深化 课本P167练习第1、2、3题. 【探研时空】 利用提公因式法计算: 0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 五、课堂总结,发展潜能 1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂. 2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止. 六、布置作业,专题突破 课本P170习题15.4第1、4(1)、6题. 板书设计 15.4.2 提公因式法 1、提公因式法 例: 练习: 15.4.3 公式法(一) 教学目标 1.知识与技能 会应用平方差公式进行因式分解,发展学生推理能力. 2.过程与方法 经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性. 3.情感、态度与价值观 培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值. 重、难点与关键 1.重点:利用平方差公式分解因式. 2.难点:领会因式分解的解题步骤和分解因式的彻底性. 3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来. 教学方法 采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维. 教学过程 一、观察探讨,体验新知 【问题牵引】 请同学们计算下列各式. (1)(a+5)(a-5); (2)(4m+3n)(4m-3n). 【学生活动】动笔计算出上面的两道题,并踊跃上台板演. (1)(a+5)(a-5)=a2-52=a2-25; (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2. 【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律. 1.分解因式:a2-25; 2.分解因式16m2-9n. 【学生活动】从逆向思维入手,很快得到下面答案: (1)a2-25=a2-52=(a+5)(a-5). (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n). 【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解. 平方差公式:a2-b2=(a+b)(a-b). 评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式). 二、范例学习,应用所学 【例1】把下列各式分解因式:(投影显示或板书) (1)x2-9y2; (2)16x4-y4; (3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2; (5)m2(16x-y)+n2(y-16x). 【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解. 【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演. 【学生活动】分四人小组,合作探究. 解:(1)x2-9y2=(x+3y)(x-3y); (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y); (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by); (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y); (5)m2(16x-y)+n2(y-16x) =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n). 三、随堂练习,巩固深化 课本P168练习第1、2题. 【探研时空】 1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除. 四、课堂总结,发展潜能 运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底. 五、布置作业,专题突破 课本P171习题15.4第2、4(2)、11题. 板书设计 15.4.3 公式法(一) 1、平方差公式: 例: a2-b2=(a+b)(a-b) 练习: 15.4.3 公式法(二) 教学目标 1.知识与技能 领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法 经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤. 3.情感、态度与价值观 培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力. 重、难点与关键 1.重点:理解完全平方公式因式分解,并学会应用. 2.难点:灵活地应用公式法进行因式分解. 3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的. 教学方法 采用“自主探究”教学方法,在教师适当指导下完成本节课内容. 教学过程 一、回顾交流,导入新知 【问题牵引】 1.分解因式: (1)-9x2+4y2; (2)(x+3y)2-(x-3y)2; (3) x2-0.01y2. 因式分解教案3整式乘除与因式分解 一.回顾知识点 1、主要知识回顾: 幂的运算性质: aman=am+n(m、n为正整数) 同底数幂相乘,底数不变,指数相加. =amn(m、n为正整数) 幂的乘方,底数不变,指数相乘. (n为正整数) 积的乘方等于各因式乘方的积. =am-n(a≠0,m、n都是正整数,且m>n) 同底数幂相除,底数不变,指数相减. 零指数幂的概念: a0=1(a≠0) 任何一个不等于零的数的零指数幂都等于l. 负指数幂的概念: a-p=(a≠0,p是正整数) 任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数. 也可表示为:(m≠0,n≠0,p为正整数) 单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 多项式除以单项式的法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 2、乘法公式: ①平方差公式:(a+b)(a-b)=a2-b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. ②完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍. 3、因式分解: 因式分解的定义. 把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解. 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; (2)因式分解必须是恒等变形; (3)因式分解必须分解到每个因式都不能分解为止. 弄清因式分解与整式乘法的内在的关系. 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式. 二、熟练掌握因式分解的常用方法. 1、提公因式法 (1)掌握提公因式法的概念; (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数; (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项. (4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式: ①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 因式分解教案4教学目标: 1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法 3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题 5、体验应用知识解决问题的乐趣 教学重点:灵活运用因式分解解决问题 教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3 教学过程: 一、创设情景:若a=101,b=99,求a2—b2的值 利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。 二、知识回顾 1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。 判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系) (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法 (3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解 (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解 (7)、2πR+2πr=2π(R+r)因式分解 2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。 分解因式要注意以下几点: (1)。分解的对象必须是多项式。 (2)。分解的结果一定是几个整式的乘积的形式。 (3)。要分解到不能分解为止。 3、因式分解的方法 提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法 公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2 4、强化训练 教学引入 师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。 动画演示: 场景一:正方形折叠演示 师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。 [学生活动:各自测量。] 鼓励学生将测量结果与邻近同学进行比较,找出共同点。 讲授新课 找一两个学生表述其结论,表述是要注意纠正其语言的规范性。 动画演示: 场景二:正方形的性质 师:这些性质里那些是矩形的性质? [学生活动:寻找矩形性质。] 动画演示: 场景三:矩形的性质 师:同样在这些性质里寻找属于菱形的性质。 [学生活动;寻找菱形性质。] 动画演示: 场景四:菱形的性质 师:这说明正方形具有矩形和菱形的全部性质。 及时提出问题,引导学生进行思考。 师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义? [学生活动:积极思考,有同学做跃跃欲试状。] 师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。 学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书: “有一组邻边相等的矩形叫做正方形。” “有一个角是直角的菱形叫做正方形。” “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。” [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。] 师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。 试一试把下列各式因式分解: (1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2 (3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y) 三、例题讲解 例1、分解因式 (1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x) (3)(4)y2+y+ 例2、分解因式 1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15= 4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y= 例3、分解因式 1、72—2(13x—7)22、8a2b2—2a4b—8b3 四、知识应用 1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a) 3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2 4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除? 五、拓展应用 1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235) 2、20042+20xx被20xx整除吗? 3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。 五、课堂小结 今天你对因式分解又有哪些新的认识? 因式分解教案5知识点: 因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。 教学目标: 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。 考查重难点与常见题型: 考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。 教学过程: 因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有: (1)提公因式法 如多项式 其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。 (2)运用公式法,即用 写出结果。 (3)十字相乘法 对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。 (5)求根公式法:如果有两个根X1,X2,那么 2、教学实例:学案示例 3、课堂练习:学案作业 4、课堂: 5、板书: 6、课堂作业:学案作业 7、教学反思: 因式分解教案6第十五章 整式的乘除与因式分解 根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数. 15.1.2 整式的加减 (3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2) 四、提高练习: 1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式? 2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。 3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图: 试化简:│a│-│a+b│+│c-a│+│b+c│ 小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。 作 业:课本P14习题1.3:1(2)、(3)、(6),2。 《课堂感悟与探究》 因式分解教案7学习目标 1、学会用平方差公式进行因式法分解 2、学会因式分解的而基本步骤. 学习重难点重点: 用平方差公式进行因式法分解. 难点: 因式分解化简的过程 自学过程设计教学过程设计 看一看 平方差公式: 平方差公式的逆运用: 做一做: 1.填空题. (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________). (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______). 2.把下列各式分解因式结果为-(x-2y)(x+2y)的多项式是() A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2 3.多项式-1+0.04a2分解因式的结果是() A.(-1+0.2a)2B.(1+0.2a)(1-0.2a) C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1) 4.把下列各式分解因式: (1)4x2-25y2;(2)0.81m2-n2; (3)a3-9a;(4)8x3y3-2xy. 5.把下列各式分解因式: (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2. 6.用简便方法计算:3492-2512. 想一想 你还有哪些地方不是很懂?请写出来。 ____________________________________________________________________________________ Xkb1.com预习展示一: 1、下列多项式能否用平方差公式分解因式? 说说你的理由。 4x2+y2 4x2-(-y)2 -4x2-y2-4x2+y2 a2-4a2+3 2.把下列各式分解因式: (1)16-a2 (2)0.01s2-t2 (4)-1+9x2 (5)(a-b)2-(c-b)2 (6)-(x+y)2+(x-2y)2 应用探究: 1、分解因式 4x3y-9xy3 变式:把下列各式分解因式 ①x4-81y4 ②2a-8a 2、从前有一位张老汉向地主租了一块“十字型”土地(尺寸如图)。为便于种植,他想换一块相同面积的长方形土地。同学们,你能帮助张老汉算出这块长方形土地的长和宽吗?w 3、在日常生活中如上网等都需要密码.有一种因式分解法产生的密码方便记忆又不易破译. 例如用多项式x4-y4因式分解的结果来设置密码,当取x=9,y=9时,可得一个六位数的密码“018162”.你想知道这是怎么来的吗? 小明选用多项式4x3-xy2,取x=10,y=10时。用上述方法产生的密码是什么?(写出一个即可) 拓展提高: 若n为整数,则(2n+1)2-(2n-1)2能被8整除吗?请说明理由. 教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的。 因式分解教案8因式分解 教材分析 因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。 教学目标 认知目标:(1)理解因式分解的概念和好处 (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。 潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。 情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。 目标制定的思想 1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。 2.课堂教学体现潜力立意。 3.寓德育教育于教学之中。 教学方法 1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。 2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。 3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。 4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。 5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。 教学过程安排 一、提出问题,创设情境 问题:看谁算得快?(计算机出示问题) (1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400 (2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000 (3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0 二、观察分析,探究新知 (1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案) (2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式? a2—2ab+b2=(a—b)2② 20x2+60x=20x(x+3)③ (3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。 板书课题:§7。1因式分解 1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。 三、独立练习,巩固新知 练习 1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示) ①(x+2)(x—2)=x2—4 ②x2—4=(x+2)(x—2) ③a2—2ab+b2=(a—b)2 ④3a(a+2)=3a2+6a ⑤3a2+6a=3a(a+2) ⑥x2—4+3x=(x—2)(x+2)+3x ⑦k2++2=(k+)2 ⑧x—2—1=(x—1+1)(x—1—1) ⑨18a3bc=3a2b·6ac 2.因式分解与整式乘法的关系: 因式分解 结合:a2—b2=========(a+b)(a—b) 整式乘法 说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。 结论:因式分解与整式乘法正好相反。 问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗? (如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1) 由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等) 四、例题教学,运用新知: 例:把下列各式分解因式:(计算机演示) (1)am+bm(2)a2—9(3)a2+2ab+b2 (4)2ab—a2—b2(5)8a3+b6 练习2:填空:(计算机演示) (1)∵2xy=2x2y—6xy2 ∴2x2y—6xy2=2xy (2)∵xy=2x2y—6xy2 ∴2x2y—6xy2=xy (3)∵2x=2x2y—6xy2 ∴2x2y—6xy2=2x 五、强化训练,掌握新知: 练习3:把下列各式分解因式:(计算机演示) (1)2ax+2ay(2)3mx—6nx(3)x2y+xy2 (4)x2+—x(5)x2—0。01(6)a3—1 (让学生上来板演) 六、变式训练,扩展新知(计算机演示) 1。若x2+mx—n能分解成(x—2)(x—5),则m=,n= 2.机动题:(填空)x2—8x+m=(x—4),且m= 七、整理知识,构成结构(即课堂小结) 1.因式分解的概念因式分解是整式中的一种恒等变形 2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。 3.利用2中关系,能够从整式乘法探求因式分解的结果。 4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。 八、布置作业 1.作业本(一)中§7。1节 2.选做题:①x2+x—m=(x+3),且m=。 ②x2—3x+k=(x—5),且k=。 评价与反馈 1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。 2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。 3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。 4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。 5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。 6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。 因式分解教案9一、背景介绍 因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。 二、教学设计 【教学内容分析】 因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。 【教学目标】 1、认知目标:(1)理解因式分解的概念和意义 (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。 2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。 3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。 【教学重点、难点】 重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。 【教学准备】 实物投影仪、多媒体辅助教学。 【教学过程】 ㈠、情境导入 看谁算得快:(抢答) (1)若a=101,b=99,则a2-b2=___________; (2)若a=99,b=-1,则a2-2ab+b2=____________; (3)若x=-3,则20x2+60x=____________。 【初一年级学生活波好动,好表现,争强好胜。情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。】 ㈡、探究新知 1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400; (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000; (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。 【“与其拉马喝水,不如让它口渴”。探索最佳解题方法的过程,就是学生“口渴”的地方。由此引起学生的求知欲。】 2、观察:a2-b2=(a+b)(a-b) , a2-2ab+b2 = (a-b)2 , 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?) 【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】 3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。) 【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】 板书课题:§6.1因式分解 因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。 ㈢、前进一步 1、让学生继续观察:(a+b)(a-b)= a2-b2 , (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别? (要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。) 【注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。】 2、因式分解与整式乘法的关系: 因式分解 结合:a2-b2=========(a+b)(a-b) 整式乘法 说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。 结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果) ㈣、巩固新知 1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么? (1)x2-3x+1=x(x-3)+1 ; (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y); (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2; (5)3a2+6a=3a(a+2); (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2+ +2=(k+ )2; (8)18a3bc=3a2b?6ac。 【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】 2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。 【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】 ㈤、应用解释 例 检验下列因式分解是否正确: (1)x2y-xy2=xy(x-y); (2)2x2-1=(2x+1)(2x-1); (3)x2+3x+2=(x+1)(x+2). 分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。 练习 计算下列各题,并说明你的算法:(请学生板演) (1)872+87×13 (2)1012-992 ㈥、思维拓展 1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n= 2.机动题:(填空)x2-8x+m=(x-4)( ),且m= 【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】 ㈦、课堂回顾 今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。 【课堂小结交给学生, 让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习——总结——学习的良好习惯。唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。】 ㈧、布置作业 教科书第153的作业题。 【设计思想】 叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。 因式分解教案1015.1.1 整式 教学目标 1.单项式、单项式的定义. 2.多项式、多项式的次数. 3、理解整式概念. 教学重点 单项式及多项式的有关概念. 教学难点 单项式及多项式的有关概念. 教学过程 Ⅰ.提出问题,创设情境 在七年级,我们已经学习了用字母可以表示数,思考下列问题 1.要表示△ABC的周长需要什么条件?要表示它的面积呢? 2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少? 结论: 1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h. 2.小王的平均速度是 . 问题:这些式子有什么特征呢? (1)有数字、有表示数字的字母. (2)数字与字母、字母与字母之间还有运算符号连接. 归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式. 判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是) 代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式. Ⅱ.明确和巩固整式有关概念 (出示投影) 结论:(1)正方形的周长:4x. (2)汽车走过的路程:vt. (3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3. (4)n的相反数是-n. 分析这四个数的特征. 它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同. 请同学们阅读课本P160~P161单项式有关概念. 根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数. 结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式. 问题:vt中v和t的指数都是1,它不是一次单项式吗? 结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式. 生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢? 写出下列式子(出示投影) 结论:(1)t-5.(2)3x+5y+2z. (3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2. (4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18. 我们可以观察下列代数式: a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式? 这样推理合情合理.请看投影,熟悉下列概念. 根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数. a+b+c的项分别是a、b、c. t-5的项分别是t、-5,其中-5是常数项. 3x+5y+2z的项分别是3x、5y、2z. ab-3.12r2的项分别是 ab、-3.12r2. x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式. 这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式. Ⅲ.随堂练习 1.课本P162练习 Ⅳ.课时小结 通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感. Ⅴ.课后作业 1.课本P165~P166习题15.1─1、5、8、9题. 2.预习“整式的加减”. 课后作业:《课堂感悟与探究》 15.1.2 整式的加减(1) 教学目的: 1、解字母表示数量关系的过程,发展符号感。 2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。 教学重点: 会进行整式加减的运算,并能说明其中的算理。 教学难点: 正确地去括号、合并同类项,及符号的正确处理。 教学过程: 一、课前练习: 1、填空:整式包括 和 2、单项式 的系数是 、次数是 3、多项式 是 次 项式,其中二次项 系数是 一次项是 ,常数项是 4、下列各式,是同类项的一组是( ) (A) 与 (B) 与 (C) 与 5、去括号后合并同类项: 二、探索练习: 1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为 这两个两位数的和为 2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为 这两个三位数的差为 ●议一议:在上面的两个问题中,分别涉及到了整式的什么运算? 说说你是如何运算的? ▲整式的加减运算实质就是 运算的结果是一个多项式或单项式。 三、巩固练习: 1、填空:(1) 与 的差是 (2)、单项式 、 、 、 的和为 (3)如图所示,下面为由棋子所组成的三角形, 一个三角形需六个棋子,三个三角形需 ( )个棋子,n个三角形需 个棋子 2、计算: (1) (2) (3) 3、(1)求 与 的和 (2)求 与 的差 4、先化简,再求值: 其中 四、提高练习: 1、若A是五次多项式,B是三次多项式,则A+B一定是 (A)五次整式 (B)八次多项式 (C)三次多项式 (D)次数不能确定 2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场 记0分,那么某队在比赛胜5场,平3场,负2场,共积多 少分? 3、一个两位数与把它的数字对调所成的数的和,一定能被14 整除,请证明这个结论。 4、如果关于字母x的二次多项式 的值与x的取值无关, 试求m、n的值。 五、小结:整式的加减运算实质就是去括号和合并同类项。 六、作业:第8页习题1、2、3 15.1.2整式的加减(2) 教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。 2.通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。 教学重点:整式加减的运算。 教学难点:探索规律的猜想。 教学方法:尝试练习法,讨论法,归纳法。 教学用具:投影仪 教学过程: I探索练习: 摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。 (1)摆第10个这样的“小屋子”需要 枚棋子 (2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。 二、例题讲解: 三、巩固练习: 1、计算: (1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1) (3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2) 2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B 3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么 (1)第一个角是多少度? (2)其他两个角各是多少度? 四、提高练习: 1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式? 2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+ (y+3)2=0,且B-2A=a,求A的值。 3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图: 试化简:│a│-│a+b│+│c-a│+│b+c│ 小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。 作 业:课本P14习题1.3:1(2)、(3)、(6),2。 因式分解教案11一、教材分析 1、教材的地位与作用 “整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。 因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。 2、教学目标 (1)会推导乘法公式 (2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。 (3)会用提公因式法、公式法进行因式分解。 (4)了解因式分解的一般步骤。 (5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。 3、重点、难点和关键 重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。 难点:正确运用乘法公式;正确分解因式。 关键:正确理解乘法公式和因式分解的意义。 二、本单元教学的方法和策略: 1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移. 2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征. 3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担. 4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯. 三、课时安排: 2.1平方差公式 1课时 2.2完全平方公式 2课时 2.3用提公因式法进行因式分解 1课时 2.4用公式法进行因式分解 2课时 因式分解教案12教学目标 1、 会运用因式分解进行简单的'多项式除法。 2、 会运用因式分解解简单的方程。 二、教学重点与难点教学重点: 教学重点 因式分解在多项式除法和解方程两方面的应用。 教学难点: 应用因式分解解方程涉及较多的推理过程。 三、教学过程 (一)引入新课 1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y (二)师生互动,讲授新课 1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3 一个小问题 :这里的x能等于3/2吗 ?为什么? 想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习 合作学习 想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0 试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等练习:课本P162课内练习2 做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么? 教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx (三)梳理知识,总结收获因式分解的两种应用: (1)运用因式分解进行多项式除法 (2)运用因式分解解简单的方程 (四)布置课后作业 作业本6、42、课本P163作业题(选做) 因式分解教案13第1课时 1.使学生了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形. 2.让学生会确定多项式中各项的公因式,会用提公因式法进行因式分解. 自主探索,合作交流. 1.通过与因数分解的类比,让学生感悟数学中数与式的共同点,体验数学的类比思想. 2.通过对因式分解的教学,培养学生“换元”的意识. 【重点】 因式分解的概念及提公因式法的应用. 【难点】 正确找出多项式中各项的公因式. 【教师准备】 多媒体. 【学生准备】 复习有关乘法分配律的知识. 导入一: 【问题】 一块场地由三个长方形组成,这些长方形的长分别为,,,宽都是,求这块场地的面积. 解法1:这块场地的面积=×+×+×=++==2. 解法2:这块场地的面积=×+×+×=×=×4=2. 从上面的解答过程看,解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是将多项式化为几个整式的积的形式的一种方法. [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础. 导入二: 【问题】 计算×15-×9+×2采用什么方法?依据是什么? 解法1:原式=-+==5. 解法2:原式=×(15-9+2)=×8=5. 解法1是按运算顺序:先算乘法,再算加减法进行计算的,解法2是先逆用乘法分配律,再进行计算的,由此可知解法2要简单一些.这个事实说明,有时我们需要将多项式化为几个整式的积的形式,而提公因式法就是把多项式化为几个整式的积的形式的一种方法. [设计意图] 让学生通过利用乘法分配律的逆运算这一特殊算法,运用类比思想自然地过渡到提公因式法的概念上,从而为提公因式法的掌握打下基础. 一、提公因式法分解因式的概念 思路一 [过渡语] 上一节我们学习了什么是因式分解,那么怎样进行因式分解呢?我们来看下面的问题. 如果一块场地由三个长方形组成,这三个长方形的长分别为a,b,c,宽都是,那么这块场地的面积为a+b+c或(a+b+c),可以用等号来连接,即:a+b+c=(a+b+c). 大家注意观察这个等式,等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点? 分析:等式左边的每一项都含有因式,等式右边是与多项式a+b+c的乘积,从左边到右边的过程是因式分解. 由于是左边多项式a+b+c中的各项a,b,c都含有的一个相同因式,因此叫做这个多项式各项的公因式. 由上式可知,把多项式a+b+c写成与多项式a+b+c的乘积的形式,相当于把公因式从各项中提出来,作为多项式a+b+c的一个因式,把从多项式a+b+c的各项中提出后形成的多项式a+b+c,作为多项式a+b+c的另一个因式. 总结:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法. [设计意图] 通过实例的教学,使学生明白什么是公因式和用提公因式法分解因式. 思路二 [过渡语] 同学们,我们来看下面的问题,看看同学们谁先做出来. 多项式 ab+ac中,各项都含有相同的因式吗?多项式 3x2+x呢?多项式b2+nb-b呢? 结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式. 多项式2x2+6x3中各项的公因式是什么?你能尝试将多项式2x2+6x3因式分解吗? 结论:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法. [设计意图] 从让学生找出几个简单多项式的公因式,再到让学生尝试将多项式分解因式,使学生理解公因式以及提公因式法分解因式的概念. 二、例题讲解 [过渡语] 刚刚我们学习了因式分解的一种方法,现在我们尝试下利用这种方法进行因式分解吧. (教材例1)把下列各式因式分解: (1)3x+x3; (2)7x3-21x2; (3)8a3b2-12ab3c+ab; (4)-24x3+12x2-28x. 〔解析〕 首先要找出各项的公因式,然后再提取出来.要避免提取公因式后,各项中还有公因式,即“没提彻底”的现象. 解:(1)3x+x3=x3+xx2=x(3+x2). (2)7x3-21x2=7x2x-7x23=7x2(x-3). (3)8a3b2-12ab3c+ab =ab8a2b-ab12b2c+ab1 =ab(8a2b-12b2c+1). (4)-24x3+12x2-28x =-(24x3-12x2+28x) =-(4x6x2-4x3x+4x7) =-4x(6x2-3x+7). 【学生活动】 通过刚才的练习,大家互相交流,总结出提取公因式的一般步骤和容易出现的问题. 总结:提取公因式的步骤:(1)找公因式;(2)提公因式. 容易出现的问题(以本题为例):(1)第(2)题中只提出7x作为公因式;(2)第(3)题中最后一项提出ab后,漏掉了“+1”;(3)第(4)题提出“-”号时,没有把后面的因式中的每一项都变号. 教师提醒: (1)各项都含有的字母的最低次幂的积是公因式的字母部分; (2)因式分解后括号内的多项式的项数与原多项式的项数相同; (3)若多项式的首项为“-”,则先提取“-”号,然后再提取其他公因式; (4)将分解因式后的式子再进行整式的乘法运算,其积应与原式相等. [设计意图] 经历用提公因式法进行因式分解的过程,在教师的启发与指导下,学生自己归纳出提公因式的步骤及提取公因式时容易出现的类似问题,为提取公因式积累经验. 1.提公因式法分解因式的一般形式,如: a+b+c=(a+b+c). 这里的字母a,b,c,可以是一个系数不为1的、多字母的、幂指数大于1的单项式. 2.提公因式法分解因式的关键在于发现多项式的公因式. 3.找公因式的一般步骤: (1)若各项系数是整系数,则取系数的最大公约数; (2)取各项中相同的字母,字母的指数取最低的; (3)所有这些因式的乘积即为公因式. 1.多项式-6ab2+18a2b2-12a3b2c的公因式是( ) A.-6ab2cB.-ab2 C.-6ab2D.-6a3b2c 解析:根据确定多项式各项的公因式的方法,可知公因式为-6ab2.故选C. 2.下列用提公因式法分解因式正确的是( ) A.12abc-9a2b2=3abc(4-3ab) B.3x2-3x+6=3(x2-x+2) C.-a2+ab-ac=-a(a-b+c) D.x2+5x-=(x2+5x) 解析:A.12abc-9a2b2=3ab(4c-3ab),错误;B.3x2-3x+6=3(x2-x+2),错误;D.x2+5x-=(x2+5x-1),错误.故选C. 3.下列多项式中应提取的公因式为5a2b的是( ) A.15a2b-20a2b2 B.30a2b3-15ab4-10a3b2 C.10a2b-20a2b3+50a4b D.5a2b4-10a3b3+15a4b2 解析:B.应提取公因式5ab2,错误;C.应提取公因式10a2b,错误;D.应提取公因式5a2b2,错误.故选A. 4.填空. (1)5a3+4a2b-12abc=a( ); (2)多项式32p2q3-8pq4的公因式是 ; (3)3a2-6ab+a= (3a-6b+1); (4)因式分解:+n= ; (5)-15a2+5a= (3a-1); (6)计算:21×3.14-31×3.14= . 答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4 5.用提公因式法分解因式. (1)8ab2-16a3b3; (2)-15x-5x2; (3)a3b3+a2b2-ab; (4)-3a3-6a2+12a. 解:(1)8ab2(1-2a2b). (2)-5x(3+x). (3)ab(a2b2+ab-1). (4)-3a(a2+2a-4). 第1课时 一、教材作业 【必做题】 教材第96页随堂练习. 【选做题】 教材第96页习题4.2. 二、课后作业 【基础巩固】 1.把多项式4a2b+10ab2分解因式时,应提取的公因式是 . 2.(20xx淮安中考)因式分解:x2-3x= . 3.分解因式:12x3-18x22+24x3=6x . 【能力提升】 4.把下列各式因式分解. (1)3x2-6x; (2)5x23-25x32; (3)-43+162-26; (4)15x32+5x2-20x23. 【拓展探究】 5.分解因式:an+an+2+a2n. 6.观察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….这列式子有什么规律?请你将猜想到的规律用含有字母n(n为自然数)的式子表示出来. 【答案与解析】 1.2ab 2.x(x-3) 3.(2x2-3x+42) 4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42). 5.解:原式=an1+ana2+anan=an(1+a2+an). 6.解:由题中给出的几个式子可得出规律:n2+n=n(n+1). 本节运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,使学生易于理解和掌握.如学生在接受提公因式法时,由提公因数到提公因式,由整式乘法的逆运算到提公因式法的概念,都是利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解. 在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问. 由于因式分解的主要目的是对多项式进行恒等变形,它的作用更多的是应用于多项式的计算和化简,比如在以后将要学习的分式运算、解分式方程等中都要用到因式分解的知识,因此应该注重因式分解的概念和方法的教学. 随堂练习(教材第96页) 解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3). 习题4.2(教材第96页) 1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4). 2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42. 3.解:(1)不正确,因为提取的公因式不对,应为n(2n--1). (2)不正确,因为提取公因式-b后,第三项没有变号,应为-b(ab-2a+3). (3)正确. (4)不正确,因为最后的结果不是乘积的形式,应为(a-2)(a+1). 提公因式法是本章的第2小节,占两个课时,这是第一课时,它主要让学生经历从乘法分配律的逆运算到提公因式的过程,让学生体会数学中的一种主要思想——类比思想.运用类比的思想方法,在新概念的提出、新知识点的讲授过程中,可以使学生易于理解和掌握.如学生在接受提公因式法时,由整式乘法的逆运算到提公因式法的概念,就利用了类比的数学思想,从而使得学生接受新的概念时显得轻松自然,容易理解,进而使学生进一步理解因式分解与整式乘法运算之间的互逆关系. 已知方程组求7(x-3)2-2(3-x)3的值. 〔解析〕 将代数式分解因式,产生x-3与2x+两个因式,再根据方程组整体代入,使计算简便. 解:7(x-3)2-2(3-x)3 =(x-3)2[7+2(x-3)] =(x-3)2(7+2x-6) =(x-3)2(2x+). 由方程组可得原式=12×6=6. 因式分解教案14第6.4因式分解的简单应用 背景材料: 因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。 教材分析: 本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。 教学目标: 1、在整除的情况下,会应用因式分解,进行多项式相除。 2、会应用因式分解解简单的一元二次方程。 3、体验数学问题中的矛盾转化思想。 4、培养观察和动手能力,自主探索与合作交流能力。 教学重点: 学会应用因式分解进行多项式除法和解简单一元二次方程。 教学难点: 应用因式分解解简单的一元二次方程。 设计理念: 根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。 教学过程: 一、创设情境,复习提问 1、将正式各式因式分解 (1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y (3)2 a2b-8a2b (4)4x2-9 [四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫] 教师订正 提出问题:怎样计算(2 a2b-8a2b)÷(4a-b) 二、导入新课,探索新知 (先让学生思考上面所提出的问题,教师从旁启发) 师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。 (2 a2b-8a2b)÷(4a-b) =-2ab(4a-b)÷(4a-b) =-2ab (让学生自己比较哪种方法好) 利用上面的数学解题思路,同学们尝试计算 (4x2-9)÷(3-2x) 学生总结解题步骤:1、因式分解;2、约去公因式) (全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法] 练习计算 (1)(a2-4)÷(a+2) (2)(x2+2xy+y2)÷(x+y) (3)[(a-b)2+2(b-a)] ÷(a-b) 三、合作学习 1、以四人为一组讨论下列问题 若A?B=0,下面两个结论对吗? (1)A和B同时都为零,即A=0且B=0 (2)A和B至少有一个为零即A=0或B=0 [合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣] 2、你能用上面的结论解方程 (1)(2x+3)(2x-3)=0 (2)2x2+x=0 解: ∵(2x+3)(2x-3)=0 ∴2x+3=0或2x-3=0 ∴方程的解为x=-3/2或x=3/2 解:x(2x+1)=0 则x=0或2x+1=0 ∴原方程的解是x1=0,x2=-1/2 [让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程] 3、练习,解下列方程 (1)x2-2x=0 4x2=(x-1)2 四、小结 (1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。 (2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。 设计理念: 根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。 因式分解教案15教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准. 教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法. 教学过程: 一、提出问题,得到新知 观察下列多项式:x24和y225 学生思考,教师总结: (1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式. 公式逆向:a2b2=(a+b)(ab) 如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式. 二、运用公式 例1:填空 ①4a2=()2②b2=()2③0.16a4=()2 ④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2 解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2 ④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2 例2:下列多项式能否用平方差公式进行因式分解 ①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2 解答:①1.21a2+0.01b2能用 ②4a2+625b2不能用 ③16x549y4不能用 ④4x236y2不能用 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。