网站首页  词典首页

请输入您要查询的范文:

 

标题 圆的面积教案
范文

【热门】圆的面积教案三篇

作为一位优秀的人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!以下是小编整理的圆的面积教案3篇,希望能够帮助到大家。

圆的面积教案 篇1

【第一课时】 圆的面积

一、 教学目标

1.知识与技能

理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。

2.过程与方法

引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。

3.情感态度与价值观

通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。

二、教学重点

正确计算圆的面积。

三、教学难点

圆面积公式的推导。

四、教学具准备

课件、学具。

五、教学过程

(一)情境导入

1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?

今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)

2.看到今天的课题,你都想知道什么?

3.什么是圆的面积?在哪?摸摸看。

(学生摸手中圆形纸片,并用手指出圆的面积)

过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。

(二)复习旧知识

1.你还记得我们已经学过了哪些图形的面积求法吗?

(生:长方形、正方形、平行四边形、三角形、梯形)

2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)

3.问:其它图形呢?(学生简要叙述其他面积推导过程)

4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。

(三)学习新课

1.请你猜猜看,圆的面积公式应该怎么推导出来?

(生:转化成已知的图形进行推导)

2.怎么转化?想想办法。任意的分成几份行吗?

(生:沿圆的直径将圆平均分成若干份)

3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:

(1)以组为单位,先摆图形。

(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。

(3)有问题及时记录,以便讨论。

(学生动手拼摆并贴在白纸上)

4.你们遇到什么问题了吗?

(生:边不是直的,是弯的)。

5.谁能帮助他解决这个问题?

(学生谈自己的想法)

6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)

【可使用圆的图片27】

7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?

(学生谈自己的想法)

8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。

(学生谈自己的想法)

9.汇报不同推导方法:

转化成长方形的:

长方形的面积=a × b 圆的面积=c×r 2

=π r × r

=π r 2

转化成平行四边形的:

平行四边形的面积= a × h

圆的面积= c × r 2

=π r × r

=π r 2

转化成三角形的:

三角形的面积= 1× a × h 2

圆的面积= 1c×4r 24

c× r 2 =

=π r 2

转化成梯形的: 梯形面积=1×(a+b)× h 2

15c3c×(+)×2r 21616

1c××2r 22

c× r 2圆形面积= ==

=π r 2

10.观察一下,这些推导过程有什么相同的地方?

(生:都是将圆转化成已知图形去推导的)

11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。

现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)

(四)巩固练习

1.求圆的面积(单位:厘米)

r=3 答案:s=28.26(平方厘米)

d=20答案:s=314(平方厘米)

c=125.6答案:s=1256(平方厘米)

2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?

答案:3.14×22 =12.56(平方米)

3.判断

(1)直径是2厘米的圆,它的面积是12.56平方厘米。()

(2)两个圆的周长相等,面积也一定相等。()

(3)圆的半径越大,圆所占的面积也越大。()

(4)圆的半径扩大3倍,它的面积扩大6倍。 ()

4.听故事解题:

巴依老爷买来一群羊。

巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。

阿凡提说:“老爷,这个长方形羊圈太小了!”

巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”

阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”

同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。

(五)小结

今天这节课你有什么收获?

【第二课时】 圆环面积

一、 教学目标

1.知识与技能

掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。

2.过程与方法

在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。

3.情感态度与价值观

进一步体验图形与生活的联系,感受平面图形的'学习价值,提高学习数学的兴趣。

二、教学重点

圆环的特征、圆环面积公式的推导及运用。

三、教学难点

灵活运用圆环面积的计算方法解决相关的简单实际问题。

四、教学具准备

课件、学具。

五、教学过程

(一)学习方法回顾、铺垫回忆一下

我们在推导圆面积计算公式时用到了什么学习方法?

(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)

这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会

想 会

新 旧

这节课我们继续用这种方法研究新问题。

(二)创设实际应用的问题情境

1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?

(1)动画光盘(2)歌曲光盘

(3)空白封面光盘

2.想知道这张光盘的内容吗?我们一起来看看。

欣赏学生的校园活动照片。

这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?

3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。

4.小组内摸一摸准备的光盘实物,再让学生实投指一指。

师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】

5.这个图形有什么特点?

生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)

6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。

板书课题:圆环

外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。

圆的面积教案 篇2

一、复习导入

1.课件出示圆:关于圆这个图形,你已经了解了一些什么?

学生口答。

2.那么你还想学习关于圆的哪些知识呢?(课件显示什么是圆的面积)

二、教学例7

1.初步猜想:猜一猜圆的面积可能与什么有关?

2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。

(1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的边长为半径画一个圆。

提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?(引导学生观察得出圆的面积小于正方形的4倍,有可能是3倍多一些,并让学生适当说明自己的想法。)

出示方格图后指出:可以用数方格的方法再来验证刚才的猜想。

提问:想一想,我们怎样去数方格?学生交流时注意引导:①先数出1/4个圆的面积;②特别接近满格的可以看作满格,其余不满一格的可以凑成一满格。

在学生数出后,让学生用计算器算一算,这个圆的面积大约是正方形面积的几倍,并将结果记录下来。

(2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

让学生观察例题中的下面两幅图,计算并填写图下的表格。

3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。

三、教学例8

1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。

2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成16份的圆,仿照教师的拼法拼一拼。

提问:拼成的图形像个什么图形?

追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)

3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。

4.进一步想像:如果将圆平均分成64份、128份……也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。

5.推导公式。

(1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。

交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。

追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)

(2)根据长方形面积的计算方法,怎样来计算圆的面积?

根据学生的回答,完成形如教科书第105页上的板书,并得出公式:S=πr。

追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

6.做“练一练”。

核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。

四、教学例9

1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:

2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。

3.学生独立列式解答,并组织交流。

五、做练习十九的第1题

1.指名读题,并要求说说对题意的理解。

2.学生独立尝试解答。

3.反馈交流。对解答错误的学生帮助其分析错误的原因。

六、全课小结

今天这节课,你有什么收获? (重点引导关注:圆的面积公式是怎样的?我们是怎样推导出圆的面积公式的?解决实际问题时,根据圆的半径和直径,分别怎样求圆的面积?等等。

圆的面积教案 篇3

教学目标:

1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

教学过程:

一、创设情境,引入新知

1.出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2.引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1.教学例11。

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3.14102 =314(平方厘米)

②求出内圆的面积:3.1462 =113.04(平方厘米)

③计算圆环的面积:314-113.04=200.96(平方厘米)

(7)提问:有更简便的计算方法吗?

(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

还可以利用乘法分配率进行简便计并。

简便计算

3.14102-3.1462

=3.14(102-62)

=3.1464

= 200.96(平方厘米)

答:这个铁片的面积是200.96平方厘米。

2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 22:41:57