标题 | 初二数学下册教案 |
范文 | 人教版初二数学下册教案(精选10篇) 作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?以下是小编收集整理的人教版初二数学下册教案,欢迎阅读,希望大家能够喜欢。 初二数学下册教案 篇1教学目标 1、理解用配方法解一元二次方程的基本步骤。 2、会用配方法解二次项系数为1的一元二次方程。 3、进一步体会化归的思想方法。 重点难点 重点:会用配方法解一元二次方程。 难点:使一元二次方程中含未知数的项在一个完全平方式里。 教学过程 (一)复习引入 1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”。 2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么? (二)创设情境 现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解? 怎样解这类方程:2x2-4x-6=0 (三)探究新知 让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。 (四)讲解例题 1、展示课本P.14例8,按课本方式讲解。 2、引导学生完成课本P.14例9的填空。 3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。 (五)应用新知 课本P.15,练习。 (六)课堂小结 1、用配方法解一元二次方程的基本步骤是什么? 2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。 3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。 4、按图1—l的框图小结前面所学解 一元二次方程的算法。 (七)思考与拓展 不解方程,只通过配方判定下列方程解的 情况。 (1)4x2+4x+1=0;(2)x2-2x-5=0; (3)–x2+2x-5=0; [解]把各方程分别配方得 (1)(x+)2=0; (2)(x-1)2=6; (3)(x-1)2=-4 由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。 点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。 初二数学下册教案 篇2教学目标: 1、理解运用平方差公式分解因式的方法。 2、掌握提公因式法和平方差公式分解因式的综合运用。 3、进一步培养学生综合、分析数学问题的能力。 教学重点: 运用平方差公式分解因式。 教学难点: 高次指数的转化,提公因式法,平方差公式的灵活运用。 教学案例: 我们数学组的观课议课主题: 1、关注学生的合作交流 2、如何使学困生能积极参与课堂交流。 在精心备课过程中,我设计了这样的自学提示: 1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述? 2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么? ①-x2+y2②-x2-y2③4-9x2 ④(x+y)2-(x-y)2⑤a4-b4 3、试总结运用平方差公式因式分解的条件是什么? 4、仿照例4的分析及旁白你能把x3y-xy因式分解吗? 5、试总结因式分解的步骤是什么? 师巡回指导,生自主探究后交流合作。 生交流热情很高,但把全部问题分析完已用了30分钟。 生展示自学成果。 生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x) 生2:-x2+y2=-(x2-y2)=-(x+y)(x-y) 师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。 生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x) 生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。 生5:a4-b4可分解为(a2+b2)(a2-b2) 生6:不对,a2-b2还能继续分解为a+b)(a-b) 师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。…… 反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题: (1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为: 下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。 (2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。 我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。 初二数学下册教案 篇3一、创设情境导入新课 1、介绍七巧板 师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗? 一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。 2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题) 【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】 二、尝试探索建立模型 (一)认一认形成表象 师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗? 不管平行四边形的`方向怎样变化,它都是一个平行四边形。(图贴在黑板上) (二)找一找感知特征 1、在例题图中找平行四边形 师:老师这有几幅图,你能在这上面找到平行四边形吗? 2、寻找生活中的平行四边形 师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架) (三)做一做探究特征 1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗? 2、在小组里交流你是怎么做的并选代表在班级里汇报。 3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流) 4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。) 【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】 (四)练一练巩固表象 完成想想做做第1、2题 (五)画一画认识高、底 1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的? 2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。 3、平行四边形的高和底书上是怎么说的呢?(学生看书) 4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动) 5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系) 6、画高(想想做做第5题)(提醒学生画上直角标记) 三、动手操作巩固深化 1、完成想想做做第3、4题 第3题:拼一拼、移一移,说说怎样移的? 第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。 2、完成想想做做第6题(课前做好,课上活动。) (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。 (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了? (3)得出平行四边形的特性 师再捏住平行四边形的对角向里推。看你发现了什么? 师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形) (4)特性的应用 师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”) 【设计意图:】 四、畅谈收获拓展延伸 1、师:今天这节课你有什么收获吗? 2、用你手中的七巧板拼我们学过的图形。 3、寻找平行四边形容易变形的特性在生活中的应用。 【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】 初二数学下册教案 篇4一、学习目标: 1.添括号法则 2.利用添括号法则灵活应用完全平方公式 二、重点难点 重点:理解添括号法则,进一步熟悉乘法公式的合理利用 难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的 三、合作学习 Ⅰ.提出问题,创设情境 请同学们完成下列运算并回忆去括号法则 (1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c) 去括号法则: 去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号; 如果括号前是负号,去掉括号后,括号里的各项都要变号。 1.在等号右边的括号内填上适当的项: (1)a+b-c=a+()(2)a-b+c=a-() (3)a-b-c=a-()(4)a+b+c=a-() 2.判断下列运算是否正确 (1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b) (3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5) 添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。 五、精讲精练 例:运用乘法公式计算 (1)(x+2y-3)(x-2y+3)(2)(a+b+c)2 (3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3) 随堂练习:教科书练习 五、小结: 去括号法则 六、作业: 教科书习题 初二数学下册教案 篇5教学目的 通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。 重点、难点 1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。 2.难点:找出能表示整个题意的等量关系。 教学过程 一、复习 1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数 本利和=本金×利息×年数+本金 2.商品利润等有关知识。 利润=售价—成本;=商品利润率 二、新授 问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元? 利息—利息税=48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43%×X×2,利息税为2.43%X×2×20% 根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6 问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得 2.43%x·2.80%=48.6 解方程,得x=1250 例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80%(即售价)-成本=15 若设这种服装每件的成本是x元,那么 每件服装的标价为:(1+40%)x 每件服装的实际售价为:(1+40%)x·80% 每件服装的利润为:(1+40%)x·80%—x 由等量关系,列出方程: (1+40%)x·80%—x=15 解方程,得x=125 答:每件服装的成本是125元。 三、巩固练习 教科书第15页,练习1、2。 四、小结 当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。 五、作业 教科书第16页,习题6.3.1,第4、5题。 初二数学下册教案 篇6教学目标 1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图; 2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法; 教学重点 掌握频率分布直方图概念及其应用; 教学难点 绘制连续统计量的直方图 教学过程 Ⅰ.提出问题,创设情境,引入新课: 问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加? 63名学生的身高数据如下: 158158160168159159151158159 168158154158154169158158158 159167170153160160159159160 149163163162172161153156162 162163157162162161157157164 155156165166156154166164165 156157153165159157155164156 解:(确定组距)最大值为172,最小值为149,他们的差为23 (身高x的变化范围在23厘米,) (分组划记)频数分布表: 身高(x)划记频数(学生人数) 149≤x<1522 152≤x<1556 155≤x<15812 158≤x<16119 161≤<16410 164≤x<1678 167≤x<1704 170≤x<1732 从表中看,身高在155≤x<158,158≤x<161,161≤<164三组人最多,共41人,所以可以从身高在155~164cm(不含164cm)之间的学生中选队员 (绘制频数分布直方图如课本P72图12.2-3) 探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员? 分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。 归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。 我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。 首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。 频数折线图也可以不通过直方图直接画出。 根据表12.2-2,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。 II课堂小结: (1)怎样制作频数分布直方图和频数分布折线图 (2)组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组 (3)如果取个长方形上边的中点,可以得到频数折线图 (4)求各小组两个断点的平均数,这些平均数叫组中值。 初二数学下册教案 篇7一、教学目标 1.了解分式、有理式的概念。 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。 二、重点、难点 1.重点:理解分式有意义的条件,分式的值为零的条件。 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。 3。认知难点与突破方法 难点是能熟练地求出分式有意义的条件,分式的值为零的条件。突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。 三、例、习题的意图分析 本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。 1.本节进一步提出P4[思考]让学生自己依次填出:。为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点? 可以发现,这些式子都像分数一样都是(即A÷B)的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。 P5[归纳]顺理成章地给出了分式的定义。分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别。 希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。 2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。 3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值。还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础。 4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零。这两个条件得到的解集的公共部分才是这一类题目的解。 四、课堂引入 1.让学生填写P4[思考],学生自己依次填出: 2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程。 设江水的流速为x千米/时。 初二数学下册教案 篇8教学内容 本节课主要介绍全等三角形的概念和性质 教学目标 1.知识与技能 领会全等三角形对应边和对应角相等的有关概念 2.过程与方法 经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角 3.情感、态度与价值观 培养观察、操作、分析能力,体会全等三角形的应用价值 重、难点与关键 1.重点:会确定全等三角形的对应元素 2.难点:掌握找对应边、对应角的方法 3.关键:找对应边、对应角有下面两种方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)对应边所对的角是对应角,?两条对应边所夹的角是对应角 教具准备 四张大小一样的纸片、直尺、剪刀 教学方法 采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识 教学过程 一、动手操作,导入课题 1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形 学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心 【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合。这样的两个图形叫做全等形,用“≌”表示 概念:能够完全重合的两个三角形叫做全等三角形 【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出结论:两个三角形全等 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边 【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流: (1)何时能完全重在一起? (2)此时它们的顶点、边、角有何特点? 【交流讨论】通过同桌交流,实验得出下面结论: 1.任意放置时,并不一定完全重合,只有当把相同的角旋转到一起时才能完全重合 2.这时它们的三个顶点、三条边和三个内角分别重合了 3.完全重合说明三条边对应相等,三个内角对应相等?对应顶点在相对应的位置 初二数学下册教案 篇9一、教学目标 1、了解二次根式的意义; 2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题; 3、掌握二次根式的性质和,并能灵活应用; 4、通过二次根式的计算培养学生的逻辑思维能力; 5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。 二、教学重点和难点 重点: (1)二次根的意义; (2)二次根式中字母的取值范围。 难点:确定二次根式中字母的取值范围。 三、教学方法 启发式、讲练结合。 四、教学过程 (一)复习提问 1、什么叫平方根、算术平方根? 2、说出下列各式的意义,并计算 (二)引入新课 新课:二次根式 定义:式子叫做二次根式。 对于请同学们讨论论应注意的问题,引导学生总结: (1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢? 若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。 (2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次 根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。 例1当a为实数时,下列各式中哪些是二次根式? 例2 x是怎样的实数时,式子在实数范围有意义? 解:略。 说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。 例3当字母取何值时,下列各式为二次根式: 分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。 解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。 (2)—3x≥0,x≤0,即x≤0时,是二次根式。 (3),且x≠0,∴x>0,当x>0时,是二次根式。 (4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。 例4下列各式是二次根式,求式子中的字母所满足的条件: 分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。 解:(1)由2a+3≥0,得。 (2)由,得3a—1>0,解得。 (3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。 (4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。 初二数学下册教案 篇10一、教材分析 本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。 二、教学目标 1、知识目标:了解多边形内角和公式。 2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。 3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。 4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。 三、教学重、难点 重点:探索多边形内角和。 难点:探索多边形内角和时,如何把多边形转化成三角形。 四、教学方法: 引导发现法、讨论法 五、教具、学具 教具:多媒体课件 学具:三角板、量角器 六、教学媒体: 大屏幕、实物投影 七、教学过程: (一)创设情境,设疑激思 师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗? 活动一:探究四边形内角和。 在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。 方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。 方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。 接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。 师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。 学生先独立思考每个问题再分组讨论。 关注: (1)学生能否类比四边形的方式解决问题得出正确的结论。 (2)学生能否采用不同的方法。 学生分组讨论后进行交流(五边形的内角和) 方法1:把五边形分成三个三角形,3个180的和是540。 方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。 方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。 方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。 师:你真聪明!做到了学以致用。 交流后,学生运用几何画板演示并验证得到的方法。 得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。 (二)引申思考,培养创新 师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。 思考: (1)多边形内角和与三角形内角和的关系? (2)多边形的边数与内角和的关系? (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系? 学生结合思考题进行讨论,并把讨论后的结果进行交流。 发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。 发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。 得出结论:多边形内角和公式:(n-2)·180。 (三)实际应用,优势互补 1、口答:(1)七边形内角和() (2)九边形内角和() (3)十边形内角和() 2、抢答:(1)一个多边形的内角和等于1260,它是几边形? (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。 3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度? (四)概括存储 学生自己归纳总结: 1、多边形内角和公式 2、运用转化思想解决数学问题 3、用数形结合的思想解决问题 (五)作业: 练习册第93页1、2、3 八、教学反思: 1、教的转变 本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。 2、学的转变 学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。 3、课堂氛围的转变 整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。