标题 | 数学函数模型及其应用专项练习题 |
范文 | 数学函数模型及其应用专项练习题 数学函数模型及其应用专项练习题 1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用() A.一次函数 B.二次函数 C.指数型函数 D.对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降; 而指数函数是爆炸式增长,不符合“增长越来越慢”; 因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的'数量y与时间x的关系如下表: x 1 2 3 … y 1 3 8 … 则下面的函数关系式中,能表达这种关系的是() A.y=2x-1 B.y=x2-1 C.y=2x-1 D.y=1.5x2-2.5x+2 解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D. 3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息: ①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是() A.①②③ B.①③ C.②③ D.①② 解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确. 4.长为4,宽为3的矩形,当长增加x,且宽减少x2时面积最大,此时x=________,面积S=________. 解析:依题意得:S=(4+x)(3-x2)=-12x2+x+12 =-12(x-1)2+1212,∴当x=1时,Smax=1212. 答案:1 1212
|
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。