网站首页  词典首页

请输入您要查询的范文:

 

标题 六年级数学《分数基本性质的地位与作用》教案
范文

六年级数学《分数基本性质的地位与作用》教案

分数基本性质:分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

根据分数的基本性质,我们能够把任何一个分数变换成另一个分数单位的等值分数。也就是说,分数基本性质解决了分数单位的换算问题。统一了分数单位,异分母的分数才能进行加减运算。

例如,+=+

=×2+

=×(2+1)

=。

在分数的运算中,把异分母分数变成同分母的分数的过程,叫通分;通分是把较小的分数单位变换为较大的分数单位。在分数的运算中,有时也需要把较大的分数单位变换成较小的分数单位,这个过程叫约分。

例如,×=

=。

通分和约分的理论根据都是分数的基本性质。

分数基本性质还是分数集合分类的一个标准。根据分数基本性质,可以把分数集合中所有等值分数都归为一类,于是分数集合就被分成无数个这样的等值分数的类别。如,上述和属于同一类,和属于同一类。

在分数集合的每一个等值分数的类别中,都有且只有一个最简分数。所谓最简分数,就是它的分子和分母除1以外再也没有其他的公因数了。如,上述、都分别是它们所在的等值分数类别中的最简分数。

在分数集合中,最简分数就是每一个等值分数类别的代表。确定这一个代表的重要意义是,确保分数运算与自然数运算一样,运算结果具有单值性(唯一性)。这就是为什么要对运算结果进行约分,直到最简分数为止。

小数单位0.1、0.01、......分别与分数单位、、......是等价的,小数是特殊的分数。小数与分数可以互相转化。

例如,把0.25化为分数。

方法1:(根据小数的意义)

0.25=0.01×25

=×25

=。

方法2:(把小数视为分母是1的分数)

0.25=

=。

方法1和方法2中,每一步都是可逆的,所以如果把化为小数,也有与上述对应的两种方法。此外,把分数化为小数还可以直接利用除法,即=1÷4=0.25。

在上述两种方法中,分数的基本性质都发挥了作用。

分数基本性质与商不变规律,事实上是从不同的形式表示相同的规律。本质相同而形式不同,主要是适应不同的情境。所以,从商不变规律的重要性亦可反观分数基本性质的重要性。

遇到小数除法,根据商不变规律可以转化为整数除法,从而以整数除法为基础把把小数除法与整数除法统一起来。

例如,2.4÷0.4=(24×0.1)÷(4×0.1)=24÷4=6;

或者,2.4÷0.4=(2.4×100)÷(0.4×100)=24÷4=6.

如果把2.4÷0.4写成分数形式,也未尝不可,不过将出现被称为“繁分数”的分数形式。把繁分数化为简单分数,也必须根据分数的基本性质。

例如,=

=6.

有了“商不变规律”,在算式的等值变形中可以避免出现繁分数的形式,所以繁分数的概念很早以前就已经不出现在小数数学的教科书中了;即使出现了“繁分数”,我们就把它当作一般分数来对待,也不必专门为之增加一个新名称。

当沟通了分数、除法与比的本质的联系后,我们可以想到,其实比也有一个与分数基本性质等价的基本性质。即比的前项与后项都乘或除以相同的数(0除外),比值不变。

根据比的这一基本性质,比可以进行等值变形。在比的实际应用中,如果不掌握比的等值变形,就会寸步难行。不过,比的等值变形不能局限于比的化简。在笔者《分数认识的三次深化与发展》一文中,已经说明把按比分配转化为分数问题来解决的时候,事实上要把整数比转化为分数比的形式,而且这些表示部分与整体关系的分数的总和还必须等于1(即部分之和等于整体)。

下面再看两个实例,进一步体会比的必要性。

例1一种混凝土是由水泥、沙子和石子混合成的,其中水泥与沙子的比是1︰1.5,沙子与石子的比是1︰。这种混凝土中水泥、沙子和石子的比是多少?

问题中两个已知的比,分别表示混凝土中两个成分的比,而且这两个比的基准不一致。解决这个问题的关键是统一比的基准。因为这两个比中都含有沙子的.成分,所以选择沙子为统一的基准,就能把两个比统一起来。

解:水泥︰沙子=1︰1.5=10︰15=︰1;

沙子︰石子=1︰。

所以,水泥︰沙子︰石子=︰1︰=2︰3︰5。

当某种混合物的成分多于两种,并要表示它各种成分之间的倍比关系时,比的表示形式就得天独厚志显示出它的优越性。

例2(阿拉伯民间流传的数学故事)有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子分别继承遗产的、、。儿子们想来想去没法分:他们所得的都不是整数,即分别为、和,总不能把一匹马割成几块来分吧?聪明的邻居牵来了自己的1匹马,对他们说:“你们看,现在有12匹马了,老大得12匹的就是6匹,老二得12匹的就是3匹,老三得12匹的就是2匹,还剩一匹我照旧牵回家去。”这样把分的问题解决了。

学习比的知识,我们都会变得和阿拉伯兄弟的那个邻居一样聪明。这个知识就是比的等值变形。

解:︰︰=(×12)︰(×12)︰(×12)

=6︰3︰2,

而且6+3+2=11。

所以,老大、老二、老三分别分得的马分别是6匹、3匹和2匹。

这位阿拉伯邻居一定是一名优秀教师,他善于把上述抽象的演算过程直观地表现出来。他牵来自己的一匹马,凑成12匹马,这个12恰是这三个分数分母的最小公倍数,这个数也是把这三个分数的比化为整数比的关键所在。

综上,可以看到分数基本性质的重要地位和作用:

⒈是把分数从一个分数单位换算为另一个分数单位的基础;

⒉是分数的通分与约分的根据,也是一些算式等值变形的重要途径之一;

⒊是分数集合被分成等值分数类别的分类标准,在每一个类别中都有且只有一个最简分数,使得分数运算的结果具有唯一性。

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2025/1/12 2:23:59