标题 | 九年级下册数学教学计划 |
范文 | 九年级下册数学教学计划范文合集5篇 时间过得太快,让人猝不及防,又将迎来新的工作,新的挑战,写一份计划,为接下来的学习做准备吧!什么样的计划才是有效的呢?以下是小编帮大家整理的九年级下册数学教学计划5篇,希望能够帮助到大家。 九年级下册数学教学计划 篇1一、课程学习目标 1、了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA三个锐角三角函数表示直角三角形中两边的比;记忆 、 、 的正弦、余弦、正切的函数值,并会由一个特殊的三角函数值说出这个特殊角。 2、理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题。 3、通过锐角三角三角形的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的应用,并结合实际问题对微积分的思想有所感受。 二、本章知识结构图 三、本章内容安排 1、主要内容:本章内容可分为两节,第一节主要学习锐角三角函数的概念,第二节主要是研究直角三角形的边角关系和解直角三角形的内容。第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。锐角三角函数为解直角三角形提供了有效地工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。 2、本章的重点:锐角三角函数的概念和解直角三角形的解法。 3、本章的难点:锐角三角函数的概念。 4、本章的中考的地位和作用:①《锐角三函数》是各地中考的热点之一,分值一般占10分左右,由于解直角三角形的应用广泛,更容易提升学生的解决事实问题的能力,所以分值比例还呈上升的趋势,仅以我市近三年的中考卷足以说明,详见下面统计表: 时间 分值08年09年10年 题号11、1911、15、188、11、14、20 分值99.510.5 比例7.5%7.9%8.6% ②本章内容与学过“相似三角形”“勾股定理”等内容联系密切,并为高中数学中三角函数等知识的学习做好准备。 四、课时安排 1、本章教学时间按照义务教育课程标准试验教科书数学九年级下册《教师教学教学用书》是12课时,但是,根据我镇教育中心统一安排了第十周的周四、周五(即20xx年4月21、22日)进行全镇第一次的模拟考的要求,再结合我校的实际情况,经备课组研究制定出中考备考计划,根据计划确定初步安排7节课,详见如下: 28.1 锐角三角函数 ……3课时 (1) 28.1锐角三角函数---正弦 ……1课时; (2) 28.1锐角三角函数---余弦和正切 ……1课时; (3) 281锐角三角函数---特殊角的三角函数值 ……1课时。 28.2 解直角三角形 ……4课时。 (1)28.2解直角三角形 ……1课时; (2)28.2解直角三角形的应用(1)---测量问题 ……1课时; (3)28.2解直角三角形的应用(2)---方向角和坡度问题 ……1课时; (4)《锐角三角函数 》的单元复习课 ……1课时。 2、单元测试卷是否要讲评或是否要进行补考要看学生测试成绩作最后的决定,如果成绩不好,那么就统一去级补考,确保单元过关,每个模块过关。 五、教学中应注意问题: 1、狠抓预习习惯。 我国教育家叶圣陶曾说过一句名言:“教育就是培养习惯”。培养良好的学习习惯是提升教育质量的重要手段,教学实践证明,凡是学得好的同学都有预习的好习惯,用学生的话来说,预习了,上课就像复习,先人一步,一步领先,步步领先。因此,我们必须狠抓学生的预习习惯。怎样才能把预习环节落到实处?《花城中学精品课程教学案》是一个很好的抓手,我们必须花大量的时间去抓学生课前做教学案的预习导学部分,我们还用了一根斜纹的横格线的标志来区分它:“ ”,要求每个同学都要努力完成,老师开始在课堂上检查,及时反馈预习情况,促进学生养成预习习惯。预习就像数学的运算问题,成败在运算。如果在条件许可的情况下,最好自已在上课前批阅学生的预习成果,使自已心中更有数,教学案的内容呈现可以根据自已学生的实际情况灵活变通,而不是一成不变,教学案强调学生必须课前预习。 2、要转变教学理念,坚持新课程倡导的“自主、合作、探究”的教学模式。我们编写的《花中精品课程教学案》的原则就是落实“自主、合作、探究”的教学理念,其中,学生的自主体现在预习,预习强调就是独立完成,而在课堂上想方设法创造合作交流的机会,师生互动、生生互动,特别是生生互动,根据教育心理学规律,学生的同伴互助的影响比老师单独教的效果更大,因此,我们还在学生的座位安排上也考虑异组同质的分法,方便学生在课堂上能开展小组合作,这样,才能适应当前的课程改革,才能应对考试的变化。 3、注重发展学生的思维能力 ①突出重点,突破难点。从过去的经验来看,以前这个模块是叫《解直角三角形》,而现在是叫《锐角三角函数》,为什么把名字更换呢?个人认为是因为本章重难点之一都是锐角三角函数的概念,是为了突出重点,突破难点,而锐角三角函数又是一种超越函数,是一个抽象的概念,学生不好理解,怎样才能突破这个重难点呢?我们首先先让学生回忆学过哪些函数?什么叫函数?接着我们就设计了三个探究活动,让学生通过计算、探索、归纳、证明,就可以让学生对变量的性质以及变量之间的对应关系有深刻的认识,加深对函数观念的理解,这样的编写方式就是为学生提供了更加广阔的探索空间,开阔思路,进一步发展学生的思维能力,有效地改变学生的学习方式。 ②特别注意通法和通解的训练。由于中考一般把角变成特殊角处理,这样往往会使一些题目出现特殊的解法,如果忽略了一般的解法,那么会防碍了思维能力的发展。比如,教材P88的例4的解法是属于通法,不过例中的条件把两个方向角 、 分别取值为 和 后,则出现 ,所以△PAB是一个直角三角形了,这样很容易利用特解求出PB的距离了,而不用联合两个直角三角形的通解来求解。如果我们不注重通法的训练,那么特解会在更多的情况下是解决不了通解的题目,因此,我们可以通过一题多解培养学生思维的广度和深度。 ③重视数学思想方法的运用。爱因斯坦曾说过,“方法是最有价值的知识”,本章有几个十分重要的思想方法是需要强化运用的,比如,转化思想、建构直角三角形的建模思想以及化曲为直的微积分的基本思想等等。 4、注重应用的意识和加强与实际的联系,学以致用。 数学源于生活,是实际的需要。这章书在前言提出意大利的斜塔问题和后面的铺设水管的长度问题、测量中的仰俯角问题、方向角问题及斜面的坡度问题等等,从不同的角度展示了解直角三角形在实际中的广泛应用,我们必须提高学生的基本知识和基本技能、方法的归纳能力,比如,测量问题的一些专用的术语等等,首先必须准确理解,其次根据题意把实际问题抽象出数学问题,通过解决数学问题得到数学问题的答案,再将数学问题的答案回到实际问题上。活学活用,有利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。 5、注意加强知识间的纵向联系,使所学知识更加系统化、网络化。 全等三角形的有关的理论对理解本章内容有积极的作用。例如,在研究解直角三角形的可解性时,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个边),这个三角形就确定下来,因此,这个直角形就可解了,事实上,我们还可以把直角三角形的边、角、边角关系式中从方程的角度去理解它,加强知识间的纵向联系,使所学知识更加系统化、网络化。 6、不要急于结束新课,确保堂堂清。 我校从20xx年开始实行真正的双休日制度,再加上我们在初三阶段数学课每周只安排了6节,因此,我们在今年2月24日(开学第二周末)才开始讲授《锐角三角函数》,本章的内容虽不多,不过很多的实际应用题,更需要学生能够理解题意后才能建模,而这个恰好我们的学生的学习的难点所在,因此,在讲授新课时,一定要讲清概念,专用的术语等,让学生在练习中切实掌握数学知识和数学的方法,不要急于赶进度,避免积重难返,使学生失去学习的兴趣。此外,由于我校每节课时是四十分钟,如果大家是每节课是四十五分钟的话,建议在每节课的最后五分钟进行当堂过关测试就更好了。 九年级下册数学教学计划 篇2一、教学背景: 为了加强课堂教学,完善教学常规,能够保证教学的顺利开展,完成初中最后一学期的数学教学,使之高效完成学科教学任务制定了本教学计划。 二、学情分析: 这学期我所带的班级仍是81和85,85班是普通班,基础知识水平较差,从期末考试的成绩来看,及格人数占20%;81班的总体水平比85班较好,但是从本次的考试成绩来看,成绩较为一般。及格人数只占到60%。这与我之前的计划相差还有一截儿。85班差生较多,期末成绩单位数的就有4人,针对这些情况,分析他们的知识漏洞及缺陷,及时进行查漏补缺,特别是多关心、鼓励他们,让这些基础过差的学生能努力掌握一部分简单的知识,提高他们的'学习积极性,建立一支有进取心、能力较强的学习队伍,让全体同学都能树立明确的数学学习目的,形成良好的数学学习氛围。 三、新课标要求: 初三数学是按照九年义务教育数学课程标准来实施的,其目的是通过数学教学使每个学生都能够在学习过程中获得最适合自己的发展。通过初三数学的教学,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。 四、本学期学科知识在整个体系中的位置和作用: 本册书的4章内容涉及《数学课程标准》中“数与代数”“空间与图形”和“实践与综合应用”三个领域的内容,其中第26章“二次函数”和第28章“锐角三角函数”的内容,都是基本初等函数的基础知识,属于“数与代数”领域。然而,它们又分别与抛物线和直角三角形有密切关系,即这两章内容既涉及数量关系问题,又涉及图形问题,能够很好地反映数形结合的数学思想和方法。第27章“相似”的内容属于“空间与图形”领域,其内容以相似三角形为核心,此外还包括了“位似”变换。在这一章的最后部分,安排了对初中阶段学习过的四种图形变换(平移、轴对称、旋转和位似)进行归纳以及综合运用的问题。第29章“投影与视图”也属于“空间与图形”领域,这一章是应用性较强的内容,它从“由物画图”和“由图想物”两个方面,反映平面图形与立体图形的相互转化,对于培养空间想象力能够发挥重要作用。对于“实践与综合应用”领域的内容,本套教科书除在各章的正文和习题部分注意安排适当内容之外,还采用了 “课题学习”“数学活动”等编排方式加强对数学应用的体现。本册书的第29章安排了一个课题学习“制作立体模型”,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动来落实与本册内容关系密切的“实践与综合应用”方面的要求。 五、个单元章节: 第26章 二次函数 本章主要研究二次函数的概念、图象和基本性质,用二次函数观点看一元二次方程,用二次函数分析和解决简单的实际问题等。这些内容分为三节安排。 第26.1节“二次函数”首先从简单的实际问题出发,从中引发和归纳出二次函数的概念;然后由函数 开始,逐步深入地、由特殊到一般地、数形结合地讨论图象和基本性质,最后安排了运用二次函数基本性质探究最大(小)值的问题。这些内容都是二次函数的基础知识,它们为后面两节的学习打下理论基础。第26.2节“用函数观点看一元二次方程”从一个斜抛物体(例如高尔夫球)的飞行高度问题入手,以给出二次函数的函数值反过来求自变量的值的形式,用函数观点讨论一元二次方程的根的几种不同情况,最后结合二次函数的图象(抛物线)归纳出一般性结论,并介绍了利用图象解一元二次方程的方法。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。第26.3节“实际问题与二次函数”安排了三个探究性问题,以商品价格、磁盘存储量和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。教科书从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。本章教学结束之后,学生在已经学习了一次函数(包括正比例函数)、反比例函数和二次函数,这些都是代数函数,即解析式中只涉及代数运算(加、减、乘、除、乘方、开方)的函数。至此,学生对函数的认识已告一段落。 第27章 相似 本章的主要内容包括相似图形的概念和性质,相似三角形的判定,相似三角形的应用举例和位似变换等。此前学习的全等是图形之间的一种特殊关系,而本章学习的相似是比全等更具一般性的图形之间的关系。全等可以被认为是特殊的相似(相似比为1),对于全等的认识是学习相似的重要基础。 第27.1节“图形的相似”从学生熟悉的一些实际问题说起,引出相似图形的概念,以及相似多边形的概念、性质等,使学生对相似先有一个一般性的认识。第27.2节“相似三角形”的内容是讨论最基本的多边形──三角形的相似关系,这是认识相似关系的基础,也是本章的重点内容。教科书首先安排了证明了“过三角形一边中点且平行于另一边的直线,截出的三角形与原三角形相似”,然后将其推广到更一般的结论“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”。在此基础上,教科书安排了三个探究问题,引导学生得出相似三角形的三种主要判定方法。教科书对于其中第一个问题进行了推导证明,另两个问题的推导证明安排学生自己完成。接着,教科书通过三个例题讨论在测量中如何利用相似三角形的知识,这些例题代表了测量中的常见典型问题。本节最后安排了相似三角形的周长和面积问题。第27.3节“位似”讨论一种图形变换──位似变换。位似是一种特殊的相似,它的特殊性表现在“两个相似图形的对应点的连线都交于一点(位似中心)”。教科书安排了利用坐标描述位似变换的内容,这是数形结合方法的体现。本套教科书中先后共出现了四种图形变换:平移、轴对称、旋转和位似,本节最后安排了一幅包含这四种变换的图案,学生通过思考图案中的问题,可以对四种变换进行综合回 第28章锐角三角函数 本章主要内容包括:锐角三角函数(正弦、余弦和正切),解直角三角形。锐角三角函数是自变量为锐角时的三角函数,即缩小了定义域的后的三角函数。解直角三角形在实际当中有着广泛的应用,锐角三角函数为解直角三角形提供了有效的工具。相似三角形的知识是学习锐角三角函数的直接基础,勾股定理等内容也是解直角三角形时经常使用的数学结论,因此本章与第18章“勾股定理”和第27章“相似”有密切关系。 第28.1节“锐角三角函数”中,教科书从沿山坡铺设水管的问题谈起,通过讨论直角三角形中直角边与斜边的比,使学生感受到锐角的大小确定后相应边的比也随之确定,而且不同的角度对应不同的比值,这种对应正是函数关系。教科书设置了“探究”栏目,让学生通过自主探究,利用相似三角形得出结论,由此引出正弦函数的概念。在此基础上,引导学生类比对正弦函数的讨论,得出余弦函数和正切函数的定义。接着教科书讨论了“已知角的大小求它的三角函数值”和“已知角的三角函数值求角”这两种问题,这样就从两个相反方向再次强调了锐角与其三角函数值之间的一一对应关系。现在计算器已经成为学习和运用三角函数的有力工具,教科书在本节最后介绍了如何使用计算器求三角函数值以及如何由三角函数值求对应的角。第28.2节“解直角三角形”中,教科书借助实际问题背景,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,并归纳出解直角三角形常用的知识和方法。接着教科书又结合四个实际问题介绍了解直角三角形在实际中的应用,这些问题的已知条件分别属于几种不同类型,解决方法具有典型性,体现了正弦、余弦和正切这几个锐角三角函数在解决实际问题中的作用。本节最后通过对比测量大坝的高度与测量山的高度,直观形象地介绍了“化整为零,积零为整”“化曲为直,以直代曲”的数学基本思想。 第29章 投影与视图 本章的主要内容包括投影和视图的基础知识,一些基本几何体的三视图,简单立体图形与它的三视图的相互转化,根据三视图制作立体模型的实践活动。全章分为三节。 第29.1 节“投影”中,首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。整个讨论过程是按照一维、二维和三维的顺序发展的。第29.2节“三视图”讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。第29.3节“课题学习 制作立体模型”中,安排了观察、想象、制作相结合的实践活动,这是动脑与动手并重的学习内容。进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。六、教法和学法指导方案: (1)指导学生形成拟定自学计划的能力.(2)指导学生学会预习的能力.要求学生边读边思边做好预习笔记,从而能带着问题听课.(3)指导学生读书的方法.(4)指导学生做笔记、写心得、绘图表的方法,使他们能够把自己的思想表达出来.(5)指导学生有效的记忆方法和温习教材的方法.3.学习能力的指导 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.4.应考方法的指导 教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.5.良好学习心理的指导 教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.对不同层次学生的数学学习能力的培养提出不同的要求;根据不同学习能力结合数学教学采取多种方法进行培养;根据个别差异因材施教,培养数学学习能力,采取小步子、多指导训练的方式进行;通过课外活动和参加社会实践,促进数学学习能力的发展. 总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法. 七、阶段性测试或检查方式及辅导措施: (1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。 (2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。 (3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。 (4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。 (5)积极与其它老师沟通,加强教研教改,提高教学水平。 (6)经常听取学生良好的合理化建议。 (7)以“两头”带“中间”战略思想不变。 (8)深化两极生的辅导。 八、教学进度安排: 3.1---3.8 第一周:讲评期末试卷 第二十六章 二次函数(12) 26.1 二次函数及其图象、性质 3.9---3.15 第二周: 26.2 二次函数的应用 3.16—3.22 第三周: 26.2 二次函数的应用 26.3 课题学习建立函数模型 3.23—3.29 第四周: 综合小复习 单元测试及讲评 3.30—4.5 第五周: 第二十七章 相似(13) 27.1 相似形 4.6—4.12 第六周: 27.2 相似三角形 4.13—4.19 第七周: 27.2 相似三角形 27.3 相似多边形 4.20—4.26 第八周: 27.3相似多边形第 4.27—5.3 第九周: 小复习 单元测试及讲评 5.4—5.10 第十周: 期中考试 讲评试题 5.11—5.17 第十一周: 二十八章锐角三角函数(12) 28.1 锐角三角函数 5.18—5.24 第十二周: 28.2 解直角三角形 5.25—5.31 第十三周: 28.2 解直角三角形 28.3 课题学习测量 小复习 单元测试及讲评 6.1—6.7 第十四周: 第二十九章视图与投影(11)29.1 三视图 6.8—6.14 第十五周: 29.1 三视图 29.2 展开图 6.15—6.21 第十六周: 29.2 展开图 29.3 课题学习 图纸与实物模型小复习单元测试及讲评 6.22—6.28 第十七周: 综合复习一 6.29—7.5 第十八周: 综合复习二 7.6—7.12 第十九周: 综合复习三 7.13—7.19第二十周: 期末考试 九年级下册数学教学计划 篇3为加强课堂教学,更加高效地完成本学科教学任务制定本教学计划。 一、教学目标:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学 生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。 二、在教学过程中抓住以下几个环节 (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。 (2)上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。 (3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。 (4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。 (5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。 (6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。 (7)积极与其它老师沟通,加强教研教改,提高教学水平。 (8)经常听取学生良好的合理化建议。 (9)以“两头”带“中间”战略思想不变。 (10)深化两极生的训导。 三、不断钻研业务,提高业务能力及水平。 积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。 四、分层辅导,因材施教 对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。 五、严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。 六、强化复习指导。 分二阶段复习:(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。 这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。 1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。 2、 按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲 方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲 图形与变换;第七讲角、相交线和平行线;第八讲 三角形;第九讲 四边形;第十讲三角函数学;第十一讲圆 . 复习中由教师提出每个讲节的复习提要,指导学生按“提要” 九年级下册数学教学计划 篇4一、指导思想 以发展观为指导,以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中程生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情、学情研究,强化中考的研究,大面积提高教学成绩,促进初三复习教学工作又好又快发展。 主要工作及要求、措施 1、提高认识,全力以赴,进入冲刺状态 首先,每位初三教师要充分认识复习教学的重要性,增强“责任重于泰山,质量压倒一切”的责任感,树立“认真就是水平,负责就是能力”的观念,发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战100天,用成绩说话,坚决夺取今年中考的全面胜利。 其次,全体教师要以毕业班工作的大局为重,服从安排,听从指挥,不管是级部的安排,还是各备课组的布置,都要扎扎实实贯彻执行,将落实进行到底。纪律严明,政令畅通,是工作胜利的保障。要彻底杜绝有令不行,有禁不止的以自我为中心的个人主义的不良作风。 第三,全体教师要加大精诚合作的团队意识,实实在在搞好团结。团结出力量,团结出成绩。在初三这个集体内坚决反对那种意气用事,挑拨离间的行为。有意见、有矛盾当面说开,大事讲原则,小事讲风格;有困难、有问题,大家齐帮助、共协商,形成一个和谐、融洽的工作氛围。 2、周密计划,科学安排 各学科现已完成教学进度,学期开始即转入总复习阶段。总体时间安排是3月上旬—4月中旬45天左右为第一轮复习,以课本知识的疏理、归纳、总结为主;4月下旬—5月中旬30天左右,以课外拓展为主,5月下旬—6月中考前,主要是整合升华阶段,训练应试能力与技巧。 三轮复习的具体思路是 一轮复习本着全面、扎实、系统、灵活的指导思想,一是做到“四个坚持”,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实“四个为主”,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好“三个关系”,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。 二轮复习本着“巩固、完善、综合、提高”的指导思想,采取“专题复习加综合训练”的复习模式,突出“五个强化”,即①强化时间观念;②强化研究:重点研究“两纲”(教学大纲和考试说明),“两题”(综合题和能力题)、“两课”(复习课和讲评课)、“两生”(优生和困难生)、“两法”(教学方法和学习方法)、“两情”(教情和学情);③强化训练:立足“三个讲好”,增强“五个针对性”。“三个讲好”:讲好专题、讲好试卷、讲好练习;五个针对性:针对目标生讲、针对中考新模式指向讲、针对二轮复习能力要求讲、针对反馈的问题讲、针对典型题目讲;④强化应试技巧与规范化,最大限度降低非知识性丢分;⑤强化学生心理调控,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。 三轮复习以“回扣、模拟、完善、调整”为指导思想。抓回扣做到“四化要求”,即:回扣教材提纲化、回扣基础系统化、回扣形式习题化、回扣时间具体化;抓模拟做到“四性要求”,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求、调整教与学的方向、升华应试技能的目的。 九年级下册数学教学计划 篇5学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。下面小编为大家整理了九年级下册数学第26章教学计划:第1节反比例函数,欢迎大家参考阅读! 一、教材分析 本章的主要内容有反比例函数的概念、解析式、性质和图象.本章是在已经学习了图形与坐标和一次函数的基础上,再次进入函数范畴,使学生进一步理解函数的内涵,并感受世界存在的各种函数及应用函数来解决实际问题.反比例函数是最基本的函数之一,是后续学习各类函数的基础. 二、重点难点 反比例函数是继一次函数之后又一重要的基本函数,它为今后学习图象和曲线的关系(如二次函数)提供了研究方法.反比例函数本身在日常生活和生产中也有着许多直接应用,这对学生建模思想、数形结合思想等重要思想方法的形成,也会产生较大的影响,所以反比例函数是本章教学的重点. 反比例函数图象的两个分支,给反比例函数的性质带来复杂性,学生不易理解,是本章教学的难点之一;综合运用反比例函数的解析式、图象和性质解决实际问题时,往往会遇到较复杂的问题情境,需要建模,利用图象以及综合运用方程、不等式及其他数学模型,所以综合运用反比例函数知识解较复杂的实际问题是本章教学又一主要难点. 三、课时安排 1.1 反比例函数 3课时 1.2 实际问题与反比例函数 4课时 复习 4课时 四、教学侧重点 (1)反比例函数概念和形成过程,应充分利用学生的生活经验和背景知识.生活经验就是学生已经知道两个量成反比例的概念,建立反比例函数离不开反比例关系这个基础;背景知识是八年级上册的“图形与坐标”及“一次函数”.所以在学习本章内容前可先与学生一起回顾一下以上已学内容,对扫清障碍,理解接受新概念很有益处. (2)注重数学思想的渗透,从数学自身发展过程看,正是由于变量与函数概念的引入,标志着初等数学向高等数学迈进,尽管本章讲述的反比例函数仅是一种最基本、最初步的函数,但其中蕴涵的数学思想方法,对学生分析问题解决问题是十分有益的.教学中应让学生充分体会诸如变化与对应思想、数形结合思想,建模思想等. (3)本章是实践性、应用性很强的内容,联系“科学”的知识特别多.这一方面体现教材的横向联系,又体现本章内容的实用价值.如密度、压强与体积、杠杆原理、欧姆定理、电功率计算等.若学生在这方面有缺陷,则直接影响到本章的学习.老师在教前在同学中广泛了解学生的基础,若有问题应给予补充说明. (4)在画反比例函数的图象时充分发挥“自主探索—合作学习” 这种学习方式的作用.在按课本顺序指导学生画完图后,让学生回顾画图的全过程.体现课标要求“性质的探索过程——根据图象和解析表达式探索并理解其性质”.引导学生分清:①两个分支是一个函数的图象,不是函数有两个图象.②画曲线时,必须将自变量从小到大的顺序在各个象限里用光滑曲线连结起来,不能跨象限连结.③在图象所在的每个象限内,当k0时,函数值y随自变量x的增大而减小;当k0时,函数值y随自变量x的增大而增大. (5)在教学中应充分利用,注意各章节之间的内在联系.在这里就尽量用图形变换的思想叙述性质、用图形变换的角度观察、分析图形之间的联系.如反比例函数的图象是关于原点成中心对称,利用这一性质可以简化画图过程;的图象与的图象关于坐标轴对称,我们可以通过图形变换来作另一函数的图象. (6)本章还渗透了建模的思想.具体过程可概括为:由实验获得数据---用描点法画出图象---根据图象和数据判断或估计函数的类别---用待定系数法求出函数的关系式---用实验数据验证.随着社会的发展和科学技术的不断进步,数学的应用已越来越被人们所重视,培养学生分析问题、解决实际问题的能力已成为当今数学教育的主流.中学数学建模正顺应了这一时代发展的潮流,是对陈旧的数学教育观下的数学教育的有力冲击.中学数学建模从学生所经历,所接触到的客观实际中提出问题,对学生了解社会,认识社会都有积极作用.通过数学建模,对数学的广泛应用有了进一步认识,促使学生在积极思考中,在问题的解决中发现数学的价值与美.同时数学建模的复杂性,决不是凭个人的力量可以完美解决的,因此强调群体的协作.通过实际考察、实验统计、演义推理、总结提炼,最后又相互交流,共同探讨,共同解决.解决问题过程中充分体现高度的协作精神.教科书中的渗透正是体现了这种思想. |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。