标题 | 方程的意义数学教学设计 |
范文 | 方程的意义数学教学设计 作为一无名无私奉献的教育工作者,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的方程的意义数学教学设计,仅供参考,大家一起来看看吧。 方程的意义数学教学设计1教学内容: 人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。 教学目标: 1、借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。 2、能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。 3、在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。 教学重点: 抓住“等式”“含有未知数”两个关键词初步建立方程的概念。 教学难点: 方程与等式的关系;方程中等量关系的建立。 教学准备: 课件、写式子的卡片、磁钉。 教学过程: 一、认识天平,谈话铺垫 教师(出示天平图):这是什么?同学们知道天平的用途吗? 一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。 二、探究新知 (一)天平演示,初步感知等与不等。 1、出示天平图1。 现在这种状态,你能用一个式子来表示吗?(板书:50+50=100) 2、(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用 g表示,那么杯子和水共重多少呢?(100+) 3、如果老师在天平右边再加一个100g的砝码,可能会出现什么样的情况?用式子来表示。 这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。 4、来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。 5、(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗? 【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。 (二)分类整理,建构概念 1、观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。) 2、学生反馈,教师根据反馈在黑板上移动式子。 预设1:按左右相等和不等分类(补充等式和不等式); 预设2:按是否含有未知数分类。 注:教师在按照两种分类方式摆放式子时整理成如下表格所示: 含有未知数 不含有未知数 等式 不等式 3、(指表格)像这样,含有未知数的等式称为方程(揭题)。 4、写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。) 5、说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。) (三)概念辨析,理清等式与方程之间的关系 1、“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。) 2、这两个式子是否是方程呢? 反馈分析: (1)式1:一定是。为什么? (2)式2:一定是等式,可能是方程。 (3)思考:等式和方程有什么联系呢? (4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。 【设计意图】方程与等式的关系是本节课的教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。 三、实践反思,巩固提高 1、“做一做”第2题及练习十四第2题:看图列出方程。 学生练习并进行反馈。 反馈侧重:使学生明确,可以根据量相等来列出方程。 2、练习十四第3题:看情境图,思考数量关系再列方程。 (1)从图上你知道了什么? (2)你能根据你知道的数量关系列出方程吗? (3)学生自行根据数量关系列出方程,并进行反馈。 【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(2011年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。 四、总结回顾,介绍历史 1、你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。) 2、教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容) 【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。 方程的意义数学教学设计2教材分析 本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。 1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。 2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。 3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。 学情分析 本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。 教学目标 1、能利用天平,通过动手操作理解等式的意义。 2、结合具体实例和情景,初步理解方程的意义,会用方程表达简单的等量关系。 3、培养保护动物的意识,感受数学与生活的密切联系,提高学习数学的兴趣。 教学重点和难点 重点:方程意义的理解 难点:建立等式、方程的概念 方程的意义数学教学设计3《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,表示数量,表示数量间的关系,都与本节课有着密切的关系。 而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习了,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。 根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标: 1、了解方程的意义,弄清方程与等式的联系与区别。 2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。 3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。 教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。 下面我就将本节课的教学过程及设计意图向大家做以汇报。 一、谈话导入: 同学们,你们小时候玩儿过跷跷板吗?(同时出示图片) 对于这个游戏的玩儿法与经验,谁能向大家介绍一下? 其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平) 【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】 二、认识并使用天平 教师介绍天平: 这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。 教师示范: 下面我们就一起来进行实际应用天平来测量一下。 首先我们来应用一下,检查一下砝码的质量是否准确。 在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。 看到天平,你会用等式表示天平两边物体的质量关系吗? 20+30=50 这有一个空的水杯,我们先来测量一下它的重量。 请你估计一下它的重量。我们来试一试。 通过测量,我们得知,水杯的.重量是100克。 现在我们缓缓向水杯里倒水,你发现天平怎么样了? 你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗? 100+X>100 我们继续测量水的质量,同理得出: 100+X>200 100+X<300 100+X=250 这几个算式都以板书形式呈现。 【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】 三、认识方程 1、根据天平写算式并分类 刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。 【《2011年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。 在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】 2、交流汇报: 学生边说,教师边板书: 等式不等式 含有未知数3x=18050+2x>180 100+x=50x380<2x 不含未知数50x2=100100+20<100+30 根据板书,教师讲解:像3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。 反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件? 【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】 四、应用概念 同学们,根据你对方程的理解,你能自己写出几个方程吗? 判断,他们写得都对吗? 黑板上刚才我们写得这些算式,有方程吗? 【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习了。】 五、方程产生的文化背景 早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。 【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】 六、拓展延伸 在拓展延伸中,我设计了这样几个题目: 1、根据线段图写方程 2、根据数量关系写方程 3、判断是否是方程 4、方程与等式的关系 七、作业: 利用课余小组时间用天平测量物体的重量。 再想,天平两边可以如何添加,能使天平继续保持平衡呢? 【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。