标题 | 分数应用题知识点总结 |
范文 | 分数应用题知识点总结 在平日的学习中,很多人都经常追着老师们要知识点吧,知识点就是掌握某个问题/知识的学习要点。想要一份整理好的知识点吗?下面是小编为大家整理的分数应用题知识点总结,欢迎大家分享。 分数应用题知识点总结1整数、分数、百分数应用题结构类型 (一)求甲是乙的几倍(或几分之几或百分之几)的应用题。 解法:甲数除以乙数 例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?) (二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。 解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。 求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量 例:六年级有学生180人,五年级的学生人数是六年级人数的6(5)。五年级有学生多少人? 180×6(5)=150 (三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。 解法:对应数量÷对应分率=单位“1” 例:育红小学六年级男生有120人,占参加兴趣活动小组人数的5(3). 六年级参加兴趣活动小组人数共有学生多少人? 120÷5(3)=200(人) 解分数应用题注意事项: (1)找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。 当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。 “甲比乙多几分之几”表示甲比乙多的数占乙的几分之几;“甲比乙少几分之几”表示甲比乙少数占乙的几分之几。 (2)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 数量关系: 单位“1”×对应分率=对应数量; 对应量÷对应分率=单位“1”的量。 (3)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。 (4)单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。 (5)“已知一个数的几分之几是多少,求这个数”的解题方法:可以用列方程的方法来解,也可以直接用除法。 ①设单位“1”的量为x,列方程解答。 ②对应数量÷对应分率=单位“1”的总数量。 (6)工程问题:把工作总量看作单位“1”, 工作效率=1/工作时间 注:在单位换算中,要弄清需要换算的单位之间的进率是多少。 认识比 1、比的意义:比表示两个数相除的关系。 2、比与分数、除法的关系:a:b=a÷b=a/b(b≠0) 相互关系区别 比前项比号(:)后项比值关系 分数分子分数线(-)分母分数值数 除法被除数除号(÷)除数商运算 3、比值:比的前项除以比的后项,所得的商就叫比值。 注:比值是一个数,可以是整数、分数、小数,不带单位名称。 4、比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。 5、最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外没有其它公因数。 6、化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。 注:化简比和求比值是不同的两个概念【意义不同,方法不同,结果不同】 7、按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。 解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成分数乘法来计算。 分数乘法的计算方法: (1)分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。 注:【任何整数都可以看作为分母是1的分数】 (2)分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。 (3)分数连乘:通过几个分数的分子与分母直接约分再进行计算。 分数应用题知识点总结2本单元有很重要的地位,它既在学生掌握了整数乘法、分数的意义和性质、分数加减法以及约分等知识的基础上进行学习的,又是学生学习分数除法、比、分数四则混合运算及百分数知识的重要基础。于是,我教学时就从学生的已有知识基础和生活经验出发,引导学生在解决实际问题的情境中,理解分数乘整数的意义。 一、尊重学生的“数学现实”。 开头依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设置复习题,为教学重点服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习相同分数加法,为推导计算方法进行铺垫。 在第一次教学《分数乘整数》之后,其实班里已经有许多学生知道了分数乘整数的计算方法。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时,我故意将分数乘整数的结论“灌输”给学生,省去了获取结论的研究过程,意在让学生问“为什么”。这时学生抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母10不和3相乘?”接下来的教学就引导学生带着“为什么”去探索。将例1进一步作为验证计算方法的题材。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。 二、实现教学学习的个性化。 每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,教师放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果;也有的学生通过生动的数学实例进行了分析。由此我深深地体会到,包或教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。 三、反思不足,提炼经验。 本节课的重点是得出分数乘整数的计算方法,约分时,只能将分母与整数约分。我还没有完全放手让学生自己总结出计算方法,没时间多练。对学生还是不放心,老师讲得太多,强调的主题太多,一些注意事项没有变成学生的语言,让学生去发现,去解决,从而记忆不是很深刻。我觉得补充的内容较多,各种题型的练习,让课堂显得时间太紧张,其实我太注重题海战术,没有让学生充分掌握好,跑得太快。只顾及到了成绩好的学生,从这一点,我深深体会到什么是“备教材”,“备学生”。课前要把知识点吃透把握住重点、难点,哪些要补充,哪些地方要创造性使用教材。学生以一个什么样的方式更容易接受,老师哪些地方该讲不该讲,都需要我们深思熟虑。 分数应用题知识点总结31.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 2.分数乘法的计算法则 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。 3.分数乘法意义 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘整数:数形结合、转化化归 5.倒数:乘积是1的两个数叫做互为倒数。 6.分数的倒数 找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。 7.整数的倒数 找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。 8.小数的倒数 普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/1。 9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。 10.分数除法:分数除法是分数乘法的逆运算。 11.分数除法计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。 12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。 13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。 分数应用题知识点总结4(一)、折扣和成数 1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。 几折就是十分之几,也就是百分之几十。例如:八折=8/10=80%, 六折五=6.5/10=65/100=65% 解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。 商品现在打八折:现在的售价是原价的80% 商品现在打六折五:现在的售价是原价的.65% 2、成数: 几成就是十分之几,也就是百分之几十。例如:一成=1/10=10% 八成五=8.5/10=85/100=80% 解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。 这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10% 今年小麦的收成是去年的八成五:今年小麦的收成是去年的85% (二)、税率和利率 1、税率 (1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。 (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。 (3)应纳税额:缴纳的税款叫做应纳税额。 (4)税率:应纳税额与各种收入的比率叫做税率。 (5)应纳税额的计算方法: 应纳税额=总收入×税率 收入额=应纳税额÷税率 2、利率 (1)存款分为活期、整存整取和零存整取等方法。 (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 (3)本金:存入银行的钱叫做本金。 (4)利息:取款时银行多支付的钱叫做利息。 (5)利率:利息与本金的比值叫做利率。 (6)利息的计算公式: 利息=本金×利率×时间 利率=利息÷时间÷本金×100% (7)注意:如要上利息税(国债和教育储藏的利息不纳税),则: 税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率) 税后利息=本金×利率×时间×(1-利息税率) 购物策略: 估计费用:根据实际的问题,选择合理的估算策略,进行估算。 购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案 数学最小的数是什么 要回答这个问题,我们首先看一下“几位数”的概念:在一个数中数字的个数是几(其最左端的数字不为0),这个数就是几位数。关于几位数的定义中,最左端的数字不为0是关键条件。就像我们分数定义中,明确规定分母不为0一样,否则没意义。 在整数中,最小的计数单位是1(个),当0单独存在时,它不占有数位。当0出现在一个几位数的末尾或中间时,它起到的只是“占位”的作用,表示该位上没有计数单位。 假设0也算一位数的话,那么最小的两位数是“10”还是“00”呢?00是没有两位数的意义的。 所以,一位数是由一个不是0这个数字写出的数,只要几位数的意义不变,最小的一位数仍然是1。 数学三位数乘两位数知识点 速度×时间=路程 单价×数量=总价 工作效率×工作时间=工作总量 路程÷时间=速度 总价÷单价=数量 工作总量÷工作时间=工作效率 路程÷速度=时间 总价÷数量=单价 工作总量÷工作效率=工作时间 积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外) 一个因数乘几,另一个因数除以几,积不变(零除外)。 两位数乘三位数,积最多五位数,最少四位数 估算原则:便于口算、接近准确数、能解决实际问题(估大或估小) 分数应用题知识点总结51、分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 4、比较分数的大小: ⑴ 分母相同的分数,分子大的那个分数就大。 ⑵ 分子相同的分数,分母小的那个分数就大。 ⑶ 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。 ⑷ 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。 5、分数的分类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 ⑴ 真分数:分子比分母小的分数叫做真分数。真分数小于1。 ⑵ 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 ⑶ 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 6、分数和除法的关系及分数的基本性质 ⑴ 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。 ⑵ 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。 ⑶ 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。 7、约分和通分 ⑴ 分子、分母是互质数的分数,叫做最简分数。 ⑵ 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。 ⑶ 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 ⑷ 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 ⑸ 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 8、倒 数 ⑴ 乘积是1的两个数互为倒数。 ⑵ 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 ⑶ 1的倒数是1,0没有倒数 9、认识真分数、假分数和带分数 真分数:分数的分子小于分母。真分数都比1小 假分数:分数的分子大于或等于分母。假分数等于或大于1 带分数:由整数和真分数组成的分数。 10、假分数、带分数和整数之间的互化。 假分数——整数。假分数的分子是分母的整倍数,分子除以分母所得的商就是整数。 整数——假分数。任何整数都可以写成假分数,由要求的分母作分母,分母与整数的乘积作分子。 假分数——带分数。由分子除以分母,商是带分数的整数部分,余数是带分数的分子。 带分数——假分数。分母不变,整数部分乘分母再加上带分数的分子作为假分数的分子。 11、认识最小公倍数 几个数公有的倍数叫这几个数的公倍数,其中最小的那个公倍数叫这几个数的最小公倍数 涉及到异分母分数比较大小或计算时,需要先通分。如何找到两个异分母的最小公倍数呢?需要考虑一下几种情况: 当两个数是互质数的时候,两个数的最小公倍数就是两个数的乘积。 两个数的最大公因数就是1 当两个数有倍数关系时,比较大的数是这两个数的最小公倍数。 比较小的数是两个数的最大公因数。 其他情况可以利用短处法找到两个数的最小公倍数。 12、无论是分数之间的互化或是分数计算。最终结果都要让分数化为最简分数。 当分母分数相加减时,通分时的分母如果是最小公倍数,那么最终的结果应该是一个最简分数。所以,尽量通分时用最小公倍数作分数的分母。 分数应用题知识点总结6分数乘法知识点:分数乘法的意义 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 2、分数乘分数是求一个数的几分之几是多少。 分数乘法知识点:分数乘法的计算法则 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。 分数乘法知识点:规律:(乘法中比较大小时) 1、一个数(0除外)乘大于1的数,积大于这个数。 2、一个数(0除外)乘小于1的数(0除外),积小于这个数。 3、一个数(0除外)乘1,积等于这个数。 分数乘法知识点:分数混合运算的运算顺序和整数的运算顺序相同。 先乘除,后加减, 同级运算从左到右运算, 如果有括号要先算括号 分数乘法知识点:整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律: a × b = b × a 乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c 分数应用题知识点总结7基本方法: ①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。 ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。 ③基准数法:确定一个标准,使所有的分数都和它进行比较。 ④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。 ⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律) ⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。 ⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。 ⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。 ⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。 ⑩基准数比较法:确定一个基准数,每一个数与基准数比较。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。