标题 | 抽屉原理教学设计 |
范文 | 抽屉原理教学设计范文(通用5篇) 作为一名人民教师,总归要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们该怎么去写教学设计呢?以下是小编收集整理的抽屉原理教学设计范文(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。 抽屉原理教学设计1教学内容: 人教版六年级下册第五单元数学广角 教学目标: 1、初步了解“抽屉原理”。 2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。 3、会用抽屉原理解决简单的实际问题。 4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的学习方法。 教学重点:抽屉原理的理解和简单应用。 教学难点:找出实际问题与抽屉原理的内在联系。 教学过程: 一、开展小游戏,引入新课。 师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来? 师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。 师:开始。 师:都坐下了吗? 生:坐下了。 师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗? 生:对! 师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。 二、实验探索 第一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象? 1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生示范)你们又能从这些放法中发现什么有趣的现象? 2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。 放法 文具盒1 文具盒2 文具盒3 最多放几枝 A B C D 我们的发现 3、小组汇报交流。 (4,0,0)、(3,1,0)、(2,1,1)、(2,2,0) 生:不管怎么放,总有1个文具盒里至少有2枝铅笔。 师:“总有”是什么意思? 生:一定有。 师:“至少”是什么意思? 生:不少于2枝,可能是3枝或4枝。 生小结:把4枝铅笔放进3个文具盒,总有一个文具盒至少放进2枝铅笔。(最多有2枝或2枝以上) 4、师:把4枝笔饭放进3个文具盒里,不管怎么放,总有一个文具盒里至少有2枝铅笔。这是我们通过实际操作发现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找出至少数呢? 生:我们发现如果每个文具盒里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个文具盒里,总有一个文具盒里至少有2枝铅笔。 (学生操作演示) 师:这种分法,实际就是先怎么分的? 生众:平均分 师:为什么要先平均分? 生1:要想发现存在着“总有一个文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那个文具盒里,一定会出现“总有一个文具盒里一定至少有2枝”。 生2:这样分,只分一次就能确定总有一个文具盒至少有几枝笔了。 把笔尽量每个文具盒里都放,还要尽量平均放。怎样用算式表示呢? 4÷3=1……11+1=2 5、那照这样的思路:把6枝铅笔放进5个文具盒,怎样想?(用铅笔操作演示)6÷5=1……11+1=2 把7枝铅笔放进6个文具盒,怎样想?…… 100枝铅笔放进99个文具盒呢? 师提问:发现了什么规律? 生小结,师整理:铅笔数比文具盒数多1,不管怎么放,总有一个文具盒里至少放进2枝铅笔。(同桌之间说一说) 第二步:研究铅笔数比文具盒数不是多1的现象。 1、师:研究到这儿,还想继续研究吗?还有哪些值得我们继续研究的问题?(生自主提问:如不是多1,什么是抽屉原理等等。) 2、师:如果铅笔数比文具盒数不是多1,而是多2、3……,总有一个文具盒里至少会有几枝铅笔? (出示:把5本书放进2个抽屉里,总有一个抽屉里至少会有几本书呢?) 生独立思考,在小组内交流,汇报。 师:许多同学都没有再摆学具,用的什么方法? 生:平均分。把5本书平均分到2个抽屉里,每个抽屉里放2本书,还剩一本书,无论放在哪个抽屉里,总有一个抽屉里至少有3本书。生:5÷2=2……12+1=3 (出示:5本书放进3个抽屉呢?8本书放进5个抽屉呢?) 5÷3=1……21+1=28÷5=1……31+3=4 师:至少数为什么不是“商+余数”?(小组讨论,汇报) 4、对比观察算式,你能发现求至少数的规律吗? 物体数÷抽屉数=商……余数至少数=商+1 5、总结抽屉原理,运用抽屉原理的关键是什么?(找准物体数和抽屉数),阅读相关资料。 a÷n=b……c(c≠0)把a个物体放进n个抽屉里,总有一个抽屉里至少放进(b+1)个物体。 三、应用原理。 1、请你试一试。(口答,指出什么是物体数,什么是抽屉数) (1)6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一鸽舍,为什么? (2)把13只小兔关在5个笼中,至少有几只兔子要关在同一个笼里? (3)有5袋饼干,每袋10快,发给6个小朋友,总有一个小朋友至少分到几块饼干? 2、下面的说法对吗?说说你的理由。 向东小学6年级共有370名学生,其中六(2)班有49名学生。 A、六年级里至少有2名学生的生日是同一天。 (370个物体,366个抽屉) B、六(2)班只有5名学生的生日在同一月。 (49个物体,12个抽屉,“只有”就是一定) C、六(2)至少有25位学生是同一性别。 3、玩“猜扑克”的游戏。 抽掉大小王,抽出5张牌,至少几张是同花色?5÷4=1……11+1=2 抽15张至少有几张数字相同?15÷13=1……21+1=2 4、学生把学生生活中能用抽屉原理解释的现象写下来。 留心观察+细心思考=伟大发现 四、全课总结。 抽屉原理教学设计2教学目标: 1.知识与能力目标: 经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 2.过程与方法目标: 经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 3.情感、态度与价值观目标: 通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 教学准备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。 教学过程: 一、游戏激趣,初步体验。 师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个游戏。大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。如果再请五位同学来抽,我还敢这样肯定地说,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊? 二、操作探究,发现规律。 (一)经历“抽屉原理”的探究过程,理解原理。 1.研究小棒数比杯子数多1的情况。 师:今天这节课我们就用小棒和杯子来研究。板书:小棒杯子 师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法? 学生分组操作,并把操作的结果记录下来。 请一个小组汇报操作过程,教师在黑板上记录。 师:观察这所有的摆法,你们发现总有一个杯子里至少有几根小棒?板书:总有一个杯子里至少有。 师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发现? 学生分组操作,并把操作的结果记录下来。 请一个小组代表汇报操作过程,教师在黑板上记录。 师:观察所有的摆法,你发现了什么?这里的“总有”是什么意思?“至少”又是什么意思? 师:那如果把6根小棒放在5个杯子里,猜一猜,会有什么样的结果? 师:怎样验证猜测的结果对不对,你又什么好方法?引导学生不再一一列举,用平均分的方法来找答案。并用算式表示分的结果:6÷5=1……1 师:那如果用这种方法,你知道把7根小棒放在6个杯子里,把10根小棒放在9个杯子里,把100根小棒放在99个杯子里,会有什么样的结果呢?你又从中发现了什么规律呢? 师:我们发现了小棒的数量比杯子的数量多1,总有一个杯子里至少有2根小棒。那如果小棒的数量比杯子的数量多2、多3,又会有什么样的结果呢? 2、研究小棒数比杯子数多2、多3的情况。 师:如果把5根小棒放在3个杯子里,会有什么结果? 引导:先平均分,每个杯子里分得1根小棒,余下的2根小棒又该怎么分呢? 师:把7根小棒放在3个杯子里,会有什么结果呢?为什么? 3、研究小棒数比杯子数的2倍多、3倍多…等情况。 师:如果把9根小棒放在4个杯子里,把15根小棒放在4个杯子里,分别又会有什么结果? 小组内讨论,再请同学说结果和理由。 4、总结规律。 师:我们将小棒看做物体、把杯子看做抽屉,你发现了什么规律? 总结:把m个物体放在n个抽屉里(m﹥n),总有一个抽屉至少有“商+1”个物体。 5、介绍抽屉原理。 “抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。 三、应用“抽屉原理”,感受数学的魅力。 1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么? 先思考:这里是把什么看做物体?什么看做抽屉?再说结果和理由。 2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么? 3、向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么? (1)六年级里至少有两人的生日是同一天。 (2)六(2)班中至少有5人是同一个月出生的。 4、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么? 5、师:开课时我们做的游戏还记得吗?为什么老师可以肯定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗? 四、全课小结。 说一说:今天这节课,我们又学习了什么新知识?(师生共同对本节课的内容进行小结) 五、布置作业。 课本73页练习十二第2、4题。 六、板书设计。 数学广角——抽屉原理 物体数÷抽屉数= 商……余数 至少数 =商+1 小棒 杯子 总有一个杯子里至少有 3 2 2 4 3 2 6 ÷ 5 = 1……1 2 5 ÷ 3 = 1……2 2 7 ÷ 4 = 1……3 2 9 ÷ 4 = 2……1 3 15 ÷ 4 = 3……3 4 教学反思: 1、通过游戏,激发兴趣。 兴趣是最好的老师。课前我设计了从52张扑克牌(去掉2张王牌)中任意抽取5张,老师肯定地说:至少有2张牌是同一花色的,在学生半信半疑时,师生共同游戏,让学生信服,但又不知道其中奥妙,这样导入,学生兴趣盎然。 2、操作探究,建立模型。 本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4根小棒放入3个杯子里,不管怎么放,总有一个杯子里至少有2根小棒”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的`教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生借助直观,很好的理解了如果把物体尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少,余下的不管放到哪个抽屉里,总有一个抽屉里比平均分得的数量多1。特别是对“某个抽屉至少有的数量”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。 3、解释应用,深化知识。 学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在应用“抽屉原理”,感受数学的魅力环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。 教学永远是一门遗憾的艺术。 反思本节课的教学,有以下几点不足: 1、在把3根小棒放进2个杯子,把4根小棒放进3个杯子里,都让学生进行了操作并做了记录,但对学生的有序思考重视不够,导致课堂检测时,学生用列举法解决问题的时候,有两个同学把所有的可能都列举对了,但不是有序排列的。还有两个差一点的学生由于思维无序,因此没能正确列举出来。 2、在把5根小棒放在3个杯子里,有学生出现了总有一个杯子里至少有3根小棒的结论,可能是用5÷3=1……2,1+2=3,也就是很多同学容易出的错误:用商+余数。这时老师没有抓住这个同学思维中的错误制造思维矛盾,因此感觉学生对总有一个抽屉至少有的数量=商+1这一知识点的理解还不够透彻。 3学生在用“抽屉原理” 解决实际问题时,书写格式教师指导不到位。有些题目是要先说结论,再说理由。那么说理由的时候,有的同学只列了算式,如:5÷3=1……2,1+1=2,还有的同学先列算式,再回答问题。在区教研室周俊主任的指导下,我才明白这类题目的书写格式是:因为5÷3=1(根)……2(根),1+1=2(根),所以每个杯子里至少有2根小棒。 总的说来,本节课学生的学习效果还不错,全班学生针对这类问题都能快速做出正确分析与判断。我也算圆满完成了这节课的学习目标,实现了三维目标的有机整合。 抽屉原理教学设计3【教学内容】 《义务教育课程标准实验教科书·数学》六年级下册。 【教材分析】 让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。 【学情分析】 教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.通过“抽屉原理”的灵活应用感受数学的魅力。 【教学重点】 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教具、学具准备】 每组都有3个文具盒和4枝铅笔。 【教学过程】 一、谈话导入 教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。 板书:抽屉原理 教师:通过学习,你想解决那些问题? 根据学生回答,教师把学生提出的问题归结为:“抽屉原理”是怎样的?这里的“抽屉”是指什么?运用“抽屉原理”能解决那些问题?怎样运用“抽屉原理”解决实际问题? 二、通过操作,探究新知 (一)认识“抽屉原理” 出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1) 师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢? 生:不管怎么放,总有一个盒子里至少有2枝笔? 师:是这样吗?谁还有这样的发现,再说一说。 师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导) 师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。 (4,0,0)(3,1,0) (2,2,0)(2,1,1), 师:还有不同的放法吗? 生:没有了。 师:你能发现什么? 生:不管怎么放,总有一个盒子里至少有2枝铅笔。 师:“总有”是什么意思? 生:一定有 师:“至少”有2枝什么意思? 生:不少于两只,可能是2枝,也可能是多于2枝? 师:就是不能少于2枝。(通过操作让学生充分体验感受) 师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢? 学生思考——组内交流——汇报 师:哪一组同学能把你们的想法汇报一下? 组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。 师:你能结合操作给大家演示一遍吗?(学生操作演示) 师:同学们自己说说看,同位之间边演示边说一说好吗? 师:这种分法,实际就是先怎么分的? 生众:平均分 师:为什么要先平均分?(组织学生讨论) 生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。 生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了? 师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说) 师:哪位同学能把你的想法汇报一下, 生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:把6枝笔放进5个盒子里呢?还用摆吗? 生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:把7枝笔放进6个盒子里呢? 把8枝笔放进7个盒子里呢? 把9枝笔放进8个盒子里呢?…… 你发现什么? 生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。 师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。 (二)探究新知 1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? (留给学生思考的空间,师巡视了解各种情况) 2.学生汇报。 生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。 板书:5本2个2本……余1本(总有一个抽屉里至有3本书) 7本2个3本……余1本(总有一个抽屉里至有4本书) 9本2个4本……余1本(总有一个抽屉里至有5本书) 师:2本、3本、4本是怎么得到的?生答完成除法算式。 5÷2=2本……1本(商加1) 7÷2=3本……1本(商加1) 9÷2=4本……1本(商加1) 师:观察板书你能发现什么? 生1:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。 师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。 生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。 师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。 交流、说理活动: 生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。 生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。 生3我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。 师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢? 生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。 师:同学们同意吧? 师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。 3.解决问题。71页第3题。(独立完成,交流反馈) 小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。 三、应用原理解决问题 师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么? 生:2张/因为5÷4=1…1 师:先验证一下你们的猜测:举牌验证。 师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢? 生:至少有3张牌是同一花色,因为9÷4=2…1 四、全课小结 上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中放进了至少2个物体。 五、思维训练 1.从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔……十二种生肖)相同。说明理由。 2.任意367名学生中,一定存在两名学生,他们在同一天过生日。说明理由。 【教学反思】 1、小组活动很容易抓住学生的注意力,让学生觉得这节课要探究的问题即好玩又有意义。 2、理解“抽屉原理”对于学生来说有着一定的难度。 3、部分学生很难判断谁是物体,谁是抽屉。 抽屉原理教学设计4教材分析 《抽屉原理的认识》是人教版数学六年级下册第五章内容。在数学问题中有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。、 学情分析 本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。 教学目标 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过操作发展 的类推能力,形成抽象的数学思维。 3、通过“抽屉原理”的灵活应用,感受数学的魅力。 教学重点和难点 【教学重点】 经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 【教学难点】 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 抽屉原理教学设计5教学内容: 教科书第68、69页例1、2。 教学目标: 1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。 2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。 教学重点:分配方法。 教学难点:分配方法。 教学方法:列举法 分析法 学习方法:尝试法 自主探究法 教学用具:课件 教学过程: 一、定向导学(3分) (一)游戏引入 师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。 2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。 引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 (二)揭示目标 理解并掌握解决鸽巢问题的解答方法。 二、自主学习(8分) 1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况? (1)理解“总有”和“至少”的意思。 (2)理解4种放法。 2、全班同学交流思维的过程和结果。 3、跟踪练习。 68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么? (1)说出想法。 如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。 (2)尝试分析有几种情况。 (3)说一说你有什么体会。 三、合作交流(8) 1、出示例2 把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(1)合作交流有几种放法。 不难得出,总有一个抽屉至少放进3本。 (2)指名说一说思维过程。 如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。 2、如果一共有8本书会怎样呢10本呢? 3、你能用算式表示以上过程吗?你有什么发现? 7÷3=2……1 (至少放3本) 8÷3=2……2 (至少放4本) 10÷3=3……1 (至少放5本) 4、做一做 11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么? 四、质疑探究(5分) 1、鸽巢问题怎样求? 小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。 2、做一做。 69页做一做2题。 五、小结检测(10) (一)小结 鸽巢问题的解答方法是什么? 物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。 (二)检测 1、填空 (1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里。 (2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书。 (3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的。 4、任意给出3个不同的自然数,其中一定有2个数的和是( )数。 2、选择 (1)5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元。 a、60 b、61 c、62 d、59 (2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元。 a、3 b、4 c、5 d、无法确定 3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么? 六、作业 (6分) 完成课本练习十二第2、4题。 板书 抽屉原理 物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。