标题 | 高一数学平面向量课件 |
范文 | 高一数学平面向量课件 高一数学平面向量课件第一教时 教材:向量 目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。 过程: 一、 开场白:课本P93(略) 实例:老鼠由A向西北逃窜,猫在B处向东追去, 问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了。 二、 提出课题:平面向量 1. 意义:既有大小又有方向的量叫向量。例:力、速度、加速度、冲量等 注意:1?数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 2?从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。 2. 向量的表示方法: 1?几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) 2?字母表示法: 可表示为 (印刷时用黑体字) P95 例 用1cm表示5n mail(海里) 3. 模的概念:向量 的大小——长度称为向量的模。 记作:| | 模是可以比较大小的 4. 两个特殊的向量: 1?零向量——长度(模)为0的向量,记作 。 的方向是任意的。 注意 与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 例:温度有零上零下之分,“温度”是否向量? 答:不是。因为零上零下也只是大小之分。 例: 与 是否同一向量? 答:不是同一向量。 例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等? 答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。 三、 向量间的'关系: 1. 平行向量:方向相同或相反的非零向量叫做平行向量。 记作: ∥ ∥ 规定: 与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作: = 规定: = 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 例:(P95)略 变式一:与向量长度相等的向量有多少个?(11个) 变式二:是否存在与向量长度相等、方向相反的向量?(存在) 变式三:与向量共线的向量有哪些?( ) 四、 小结: 五、 作业:P96 练习 习题5.1 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。