标题 | 《圆柱的表面积》教学设计 |
范文 | 《圆柱的表面积》教学设计 作为一名专为他人授业解惑的人民教师,时常要开展教学设计的准备工作,借助教学设计可以提高教学效率和教学质量。那么什么样的教学设计才是好的呢?下面是小编精心整理的《圆柱的表面积》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。 《圆柱的表面积》教学设计1【教学内容】 P13-14页例3、例4,完成“做一做”及练习二的部分习题。 【教学目标】 1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。 2、培养学生良好的空间观念和解决简单的实际问题的能力。 3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。 【教学重点】 掌握圆柱侧面积和表面积的计算方法。 【教学难点】 运用所学的知识解决简单的实际问题。 【教学准备】 多媒体课件 【自学内容】 学习提示: (1)长方体、正方体的表面积指的是什么? (2)圆柱的表面积指的是什么? (3)圆柱的底面积你会计算吗?侧面积呢? (4)你知道侧面的形状以及长、宽与圆柱的关系吗? 【教学预设】 一、自学反馈 1、求下面各圆柱的侧面积 (1)底面周长2.5分米,高0.6分米 (2)底面直径8厘米,高12厘米 2、求下面各圆柱的表面积 (1)底面积是40平方厘米,侧面积是25平方厘米 (2)底面半径是2分米,高是5分米 二、关键点拨 1、圆柱的侧面积。 (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。 (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢? (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高) 2、侧面积练习:练习七第5题 (1)学生审题,回答下面的问题: ① 这两道题分别已知什么,求什么? ② 计算结果要注意什么? (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。 (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。 3、理解圆柱表面积的含义。 (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。) (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。 公式:圆柱的表面积=圆柱的侧面积+底面积×2 4、教学例4 (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积) (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面) (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。) ①侧面积:3.14×20×28=1758.4(平方厘米) ②底面积:3.14×(20÷2)2=314(平方厘米) ③表面积:1758.4+314=20xx.4≈20xx(平方厘米) 5、小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。 三、巩固练习 1、做第14页“做一做”。(求表面积包括哪些部分?) 2、练习七第6题。 四、分享收获畅谈感想 这节课,你有什么收获? 五、板书:圆柱的侧面积=底面周长×高 圆柱的表面积=圆柱的侧面积+底面积×2 例4:①侧面积:3.14×20×28=1758.4(平方厘米) ②底面积:3.14×(20÷2)2=314(平方厘米)③表面积:1758.4+314=20xx.4≈20xx(平方厘米)听课随想 反思与体会 《圆柱的表面积》教学设计2一、创设情境,悬念导入。 上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料? 板书课题:圆柱的表面积 二、合作探究,发现方法。 1、圆柱的表面积包括哪些面的面积? 2、研究圆柱的侧面积。 (1)大家猜测一下,圆柱的侧面展开来可能会是什么样的? (2)学生想办法亲自验证。 (学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。) 师问:①剪、拆的过程中你有什么发现? ②长方形的长当于什么,宽相当于什么? ③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢? (3)推导圆柱体侧面积的计算公式: 通过学生动手操作、观察比较得出,因为:长方形的面积=长×宽 所以:圆柱的侧面积=底面周长×高 3、明确圆柱的表面积的计算方法。 师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗? 板书:圆柱的表面积=圆柱的侧面积+两个底面的面积 三、实际应用 现在你能求出做这样一顶厨师帽需要多少面料吗? 出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米) 1、引导:①求需要用多少面料,实际是求什么? ②这个帽子的表面积 的是什么? 2、学生同桌讨论,列式计算,师巡视指导。 3、汇报计算情况。 板书:帽子的侧面积:3.14×20×28=1758.4(cm2) 帽子的底面积:3.14×(20÷2)2=314(cm2) 需要用面料: 1758.4+314=20xx.4≈20xx(cm2) 答:需用20xxcm2的面料。 四、巩固练习:课本第14页“做一做”。 五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。 六、作业:课内:练习二第5、7题;课外:练习二第6、8题。 附:板书设计 圆柱的表面积 长方形的面积= 长 × 宽 圆柱的侧面积=底面周长 × 高 圆柱的表面积=圆柱的侧面积+两个底面的面积 例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米) 帽子的侧面积:3.14×20×28=1758.4cm2) 帽子的底面积:3.14×(20÷2)2=314(cm2) 需要用面料: 1758.4+314=20xx.4 ≈20xx(cm2)答:需用20xxcm2的面料。 《圆柱的表面积》教学设计3教学内容: 小学数学第十二册教材P33~P34 教学目标: 1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。 2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。 教学媒体: 圆柱形物体、学具、多媒体课件 教学重点: 圆柱侧面积的计算方法推导。 教学过程: 一、猜测面积大小,激发情趣导入 1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。) 2、这两个圆柱谁的侧面积谁大?为什么? 3、复习:圆柱的侧面积=底面周长×高 刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。 二、组织动手实践,探究圆柱表面积 1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积) 2、你们觉得这两个圆柱谁的表面积大?为什么? 生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。 3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢? 生:计算的方法 师:怎么计算圆柱的表面积呢? 圆柱的表面积=侧面积+两个底面的面积 (板书) 4、那现在你们就算算这两个圆柱的表面积是多少? 生:(不知所措)没有数字怎么算啊? 师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算? 生1:我想知道圆柱体的底面半径和高。 生2:我想知道圆柱体的底面直径和高。 生3:我想知道圆柱体的底面周长和高。 师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。 5、汇报展示: 情况一:半径:31.4÷3.14÷2=5(cm) 底面积:3.14×5×5=78.5(平方厘米) 侧面积:31.4×18.84=591.576(平方厘米) 表面积:591.576+78.5×2=748.576(平方厘米) 情况二:半径:18.84÷3.14÷2=3(cm) 底面积:3.14×3×3=28.26(平方厘米) 侧面积:31.4×18.84=591.576(平方厘米) 表面积:591.576+28.26×2=648.096(平方厘米) 师:通过我们计算验证了我们刚才的判断是正确的。 接下来我们打开书翻到33页自学例2,从这个例题中你学到什么? 生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。 生2:这样做挺麻烦的有没有更简单一点的方法呢? 6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法) 教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。 问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径) 所以圆柱体表面积=长方形面积=底面周长×(高+半径) 用字母表示:S=C×(h+r) 我们用这个方法来验证一下我们的例2看是不是比原来简单? 汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因) 那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。 本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。 三、 分组闯关练习 1、多媒体出示题目。 第一关(填空) 沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。 第二关 一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。 第三关(用你喜欢的方法完成下面各题) 一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积? 2、汇报结果,给予评价。 我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。 四、 质疑(同学们还有什么疑问吗?) 五、反馈小结: 教学反思 1、 自主探究,体验学习乐趣 以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。 2、合作交流,加深对知识的理解深度。 给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。 《圆柱的表面积》教学设计4一、设计理念及设计思路。 建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长×高,并能运用公式灵活计算。 数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。 二、教学目标。 知识与技能: 1、理解表面积的含义; 2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。 过程与方法: 经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。 情感态度与价值观: 感悟数学知识的能力,体会数学知识之间的相互联系。 重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。 难点:灵活运用侧面积、表面积的有关知识解决实际问题。 教学准备:投影仪,圆柱模型、小剪刀。 三、教学过程。 (一)、复习引入。(投影出示) (1)口答下列各题: ①圆的半径是1厘米,圆的周长是多少?面积是多少? ②长方体、正方体的表面积如何计算。(单位:厘米) 3 3 4 3 5 3 你能算出它们的表面积吗? (2)引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。 板书课题:圆柱的表面积 (二)、探究新知。 (1)圆柱的表面积的含义。 师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流) 学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积 (2)计算圆柱的表面积。 ①组织学生将自制的圆柱模型展开分组学习。 ②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。 ③以长方形为例,指导学生观察联系。 长方形的长等于圆柱底面的周长,宽等于圆柱的高。 得出结论:长方形的面积= 长 × 宽 圆柱的侧面积=底面周长 × 高 师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗? (3)解决实际问题。 ①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米) ②组织学生读题,找出条件,说说实际是求什么问题。分组学习 ③学生独立完成计算。 ④反馈订正。 订正时让学生讲解题思路和步骤及计算结果取近似值的方法。 强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。 三、课堂小结:圆柱的表面积怎样计算? 四、应用反馈。(独立完成计算) 1、一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。 2、广告公司制作了一个底面直径是1.5m,高2.5m的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报? 板书设计: 圆柱的表面积 圆柱的表面积= 圆 柱 侧 面 积 + 两 个 底 面 积 宽(圆柱的高) 长(底面圆的周长) 圆柱侧面积=底面周长×高 《圆柱的表面积》教学设计5教学目标: (一)知识目标 1.理解圆柱的侧面积和表面积的含义。 2.掌握圆柱侧面积和表面积的计算方法。 3.会正确计算圆柱的侧面积和表面积。 (二)能力目标 能灵活运用求表面积、侧面积的有关知识解决一些实际问题。 教学重点: 理解求表面积、侧面积的计算方法,并能正确进行计算。 教学难点: 能灵活运用表面积、侧面积的有关知识解决实际问题。 教具学具准备: 1.教师、学生每人用硬纸做一个圆柱体模型。 2.投影片。 教学过程: 课前谈话(激发兴趣):今天来了这么多听课的老师,同学们高兴吗?(生:高兴)让我们用热烈的掌声欢迎他们的到来。在刚刚结束的体育运动会中,我们六(2)班包揽了团体赛的冠军,你们在赛场上的团结、拼搏精神给全体老师留下了深刻的影响,他们更想看看在课堂这一主阵地上六(2)的同学又是怎样的呢?面临这种考验,你们想不想说点儿什么? 生:我想对老师们说,我们一定会好好表现的,不会让你们失望。 生:我们的课堂将比赛场更精彩…… 师:我坚信你们一定不会让老师失望的。 一、引入新课: 师:昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友? 生:圆柱是由平面和曲面围成的立体图形。 生:我还知道圆柱各部分的名称…… 生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。 课件演示这一过程 师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想) 师:你还想知道什么呢? 生:还想知道怎么求它的表面积...... 师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积) 二、探究新知 师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积? 指名学生摸其表面积,并追问:怎样求它的表面积? 生:六个面的面积和就是它的表面积 师:怎样求圆柱的表面积呢?(学生分组讨论) 学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书) 1、圆柱的侧面积 师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口) 小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。 师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。 课件展示其变化过程。 师生小结:(教师板书)侧面积=底面周长×高 (评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪) 师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……) 投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。 (1)学生独立解答 (2)投影呈现学生的解答,并让其讲清自己的解题思路。 师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量? 生:底面周长和高 师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。 2、圆柱的表面积 师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积) 教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么) 指名学生说解题思路, 师:这说明要计算圆柱的表面积需要抓出哪两个量? 生:底面积和侧面积 师生小结:圆柱的表面积=底面积×2﹢侧面积 3、反馈练习 师:想一想,应该先求什么?再求什么?请大家动手试一试。 4、实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略) 三、全课小结:这节课你有什么收获? 你有没有想提醒同学们注意的地方? 生:要注意单位,还要注意所要求得圆柱有几个底面…… 最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略) 《圆柱的表面积》教学设计6一、引入新课: 1.引入。 师:在上节课,老师布置同学们课后每人用纸板做一个圆柱体,你们带来了吗?这就是我们昨天刚刚认识的新的几何体朋友——圆柱,谁能向大家介绍一下你的这位几何新朋友?(★ 生答时要利用手中的道具) 2.激发兴趣。 【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米,高 30 厘米 。想请你帮设计部算一算,制作这样一个罐头盒至少需要多少铁皮? 师:“要求制作这样的一个罐头盒至少需要多少铁皮,实际上,用数学语言来说,就是求什么?” 师:这节课我们就一起来研究——怎样求圆柱的表面积。(板书:圆柱的表面积) 二、探究新知。 1.什么是“圆柱的表面积”? 师:以前我们学过长方体和正方体的表面积,你能说说圆柱的表面积指的是什么吗?和周围的同学研究一下。(学生分组讨论) 师:谁能用简炼的语言概括出:什么加什么就是圆柱的表面积? (生:圆柱的侧面积 + 两个底面的面积就是圆柱的表面积。)(教师板书) 师:【课件演示这一过程】“你能用一个等式来概括这句话吗?” 师贴出——圆柱的表面积=圆柱的侧面积+两个底面的面积 也就是说,要求圆柱的表面积,必须知道哪两个条件? 2。圆柱的侧面积。 师:两个底面是圆形的,我们早就会求它的面积。//而它的侧面是一个曲面,怎样计算侧面积呢?这是我们这节课要解决的一个难点。(板书:侧面积) ①合作探究。 “请同学们利用自己手中的圆柱体,小组研究一下——圆柱的侧面积该怎么求? 学生分组探究。 ②汇报交流。★※★※★ 师:哪个小组来汇报一下你们组的做法和结果?要到前面来,边汇报边演示你们的推导过程。 ③.【课件演示变化过程】★师解说。 (贴出:圆柱的侧面积=底面周长×高 ) 强化:“要求圆柱的侧面积,必须知道什么条件?” 3.学习例1。【课件出示】 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数。) 一人板演,全班齐练。 板演者讲解题思路。集体订正。 小结:我们在计算圆柱的侧面积时,必须知道什么条件?(底面周长和高。)可是有时候底面周长没有直接给出,我们可以根据底面直径或半径求出圆柱的底面周长。 4.计算圆柱的侧面积。 请同学们看屏幕——有这样几个圆柱体,你会求它们的侧面积吗?只列式,不计算。 【课件出示】 5.学习例2。 师出示手中的教具:这是老师用纸板制作的圆柱体。(高15厘米,底面半径15厘米)现在,老师想考考你:要制作这样一个圆柱体,至少需要多少平方厘米的纸板? ①弄清几个面:要求“制作这样一个圆柱体,至少需要多少平方厘米的纸板”,实际上就是求这个圆柱的什么? 老师手中这个圆柱体一共有几个面? 三个什么面? 【课件出示例2图】 ②独立试算:(一个板演,全班齐练。) ③指名讲解题思路。 ④小结:圆柱的表面积包括侧面积和底面积,要求圆柱的表面积,就是要求出这几个面的面积的总和。 ⑤扩展: a.刚才这道题是“已知底面半径和高,求圆柱的表面积。”如果是“已知底面直径和高”,该怎样求圆柱的表面积? 【课件出示例2改后的题】 b.师:如果是“已知圆柱的底面周长和高”,又该怎样求圆柱的表面积呢? 【课件出示例2改后的题】 学生口算。 ★ 师:如果“已知圆柱的侧面积和底面半径,你会求这个圆柱的高吗?” 【课件出示】一个圆柱体的侧面积是188.4平方分米,底面半径是2分米。它的高是多少分米? d.指名说解题思路。 三.实际应用。 【课件出示例3】一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。) ①请同学们认真的默读题,想想:题目让我们求什么?应该怎么求呢? ②强调“没盖”,“得数保留整百平方厘米。” ③独立计算。 ④板演者讲解题思路。(讲清每步算的是什么) ⑤了解“进一法”。 ★强调:“这里不能用四舍五入法取近似值。在实际应用中,使用的材料都要比计算得到的结果多一些。 因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种求近似数的方法叫做进一法。” ⑥举一反三 师:同学们,老师这里带来了几种不同物体的图片,它们都有一个部分是圆柱。怎样求它们的表面积呢? 【课件出示】 ★小结:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活计算。 四.巩固练习。 1.一顶厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子至少需要多少面料?(得数保留整十平方厘米。) 2.砌一个圆柱形的水池,底面直径2.5米,深3米。在水池的周围与底面抹上水泥,抹水泥的面积是多少平方米? 3.回到引入题。 【课件出示】罐头厂要制作一批圆柱形罐头盒,底面直径 10 厘米 ,高 30 厘米 。现在请你帮设计部算一算制作这样一个罐头盒至少需要多少铁皮? 如果要制作200个呢?制作1000个呢? 想一想:工人师傅在制作它时就按照我们刚才求出的数据准备料,行吗?为什么? 师:如果给罐头盒贴一圈商标纸,你能算出每张商标纸的面积吗? 五.实践应用。 师:拿出自己制作的圆柱体,老师看看,谁的做的漂亮?(选出可以欣赏的。) “现在你能算出自己包装的圆柱体各用了多少平方厘米的彩纸吗?请同学们课后测量出你所需要的数据,然后算出来。” 六.全课小结: 师:今天这节课我们学习了《圆柱的表面积》,谈谈你有什么收获? 师:你有没有想提醒同学们注意的地方? 教学目标: 1.知识目标: ⑴.理解圆柱的侧面积和表面积的含义。 ⑵.掌握圆柱侧面积和表面积的计算方法。 ⑶.会正确计算圆柱的侧面积和表面积。 2.能力目标:能灵活运用求表面积、侧面积的有关知识解决一些实际问题。 教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。 教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。 教具学具准备: 1.教师、学生每人用硬纸做一个圆柱体模型、另备圆柱体实物。 2.多媒体课件。 《圆柱的表面积》教学设计7学习目标 通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。 学习重点 使学生认识圆柱侧面展开图的多样性。 过程与方法 教师活动 教学过程: 一、创设情境,引起兴趣。 拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢? 二、自主探究,发现问题。 研究圆柱侧面积 1、独立操作: 2、观察对比:观察展开的图形各部分与圆柱体有什么关系? 3、小组交流:能用已有的知识计算它的面积吗? 4、小组汇报。重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系? 长方形的面积=圆柱的侧面积即长×宽=底面周长×高,所以, 圆柱的侧面积=底面周长×高S侧==C×h 如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 如果圆柱展开是平行四边形,是否也适用呢? (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开) 研究圆柱表面积 1、现在请大家试着求出这个圆柱体茶叶罐用料多少。2、圆柱体的表面积怎样求呢?3、动画:圆柱体表面展开过程 三、实际应用 1、解决书上的例题 2、填空:圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为() 3、要求一个圆柱的表面积,一般需要知道哪些条件() 4、教材第六页试一试。 学生活动 说说自己的猜想。 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。 选出一个学生已经展开的图形贴到黑板上。 长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。 学生动手操作,动笔验证,得出了同样适用的结论。 学生测量,计算表面积。 得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2 指名板演,互相纠正。 学生互相讨论后完成。 课后完成。 板书设计 圆柱的表面积 教学反思 学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。 《圆柱的表面积》教学设计8设计说明 1.在情境中建立数学与生活的联系。 《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。 2.在操作中渗透转化思想。 转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。 3.在应用中培养学生解决问题的能力。 “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。 课前准备 教师准备 多媒体课件 学生准备 纸质圆柱形物体 剪刀 长方形纸板 教学过程 ⊙提出问题、设疑导入 1.说一说。 师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。 2.想一想。 课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计) 师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题? 3.汇报。 小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。 4.交代学习目标,导入新课。 师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题) 设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。 《圆柱的表面积》教学设计9教学过程 (一)复习导入,探求新知 用课件展示复习内容: (1)我们学过的圆的周长是怎么计算的?面积呢? (2)长方形的面积呢? (3)圆柱有哪些特征? (二)设下悬念,导入课题 由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。 (三)动手操作,发现规律 引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。 (四)例题解剖,引导学习 1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料? 解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2) (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2) (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2) 答: (五)巩固练习,知识拓展 做一做: 1、一个圆柱底面半径是2dm,高是5dm,求它的表面积? 解:(1)s侧面积=2×3.14×2×5=62.8(dm2) (2)s底面积=3.14×2×2=12.56(dm2) (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2) 2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少? 解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2 (六)反思小结,加强记忆 让学生自主总结“本节课学习了什么?” 1.这堂课的主要内容是什么? 2.求圆柱表面积的公式是什么? 3.如何运用公式求解实际问题。 这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。 (七)设置问题,带出课堂 16页第6题的第1小题,第7题和第14题。 教学目标 1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。 2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。 3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。 教学的重、难点及教学关键 (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。 (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。 (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。 《圆柱的表面积》教学设计10教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。 教学目标: 1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。 2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。 3、能正确运用公式计算圆柱的侧面积和表面积。 教学重点: 1、理解圆柱侧面积和表面积的意义。 2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。 教学难点:能正确计算圆柱的侧面积和表面积。 教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。 预习作业: 1、预习课本第21-22页的例2、例3。 2、掌握圆柱侧面积和体积的计算方法。 3、在作业本上完成第22页练一练第1题、第2题。 教学过程: 一、预习效果检测 1、圆柱的侧面积= 2、什么叫做圆柱的表面积? 3、圆柱的表面积= 4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。 二、合作探究 (一)、教学例1 1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。 问:你能想办法算出这张商标纸的面积吗? ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。 ⑵交流:你们是怎么算的? 沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。 ⑶讨论:商标纸的面积就是圆柱中哪个面的面积? 观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系? 使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。 2、出示例1中的罐头。 ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便? ⑵出示数据:底面直径11厘米高:15厘米 ⑶学生算出商标纸的面积。 ⑷交流:你是怎么算的?先算什么?再算什么? 如果知道的是底面半径,怎么算呢? 3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。 追问:怎么算圆柱的侧面积? 根据学生回答板书:圆柱侧面积=底面周长×高 4、练习:完成“练一练”第1题。 (二)、教学例3 1、出示例3中的圆柱。 ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米? ⑵让学生算一算后交流。师板书: 长:3.14×2=6.28(厘米)宽:2厘米 ⑶圆柱的两个底面的直径和半径分别是多少厘米? 板书:直径2厘米半径1厘米 2、引导画出圆柱的展开图。 ⑴这个圆柱有几个面?分别是什么? ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大? ⑶在书上方格纸上画出这个圆柱的展开图。 ⑷交流:你是怎么画的? 3、认识圆柱的表面积。 ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积? 板书:圆柱的'表面积=底面圆的面积×2+圆柱侧面积 ⑵算出这个圆柱的表面积。 算后交流,提醒学生分步计算。 4、练习:完成“练一练”第2题。 (三)、全课总结 这节课我们学习了什么?(板书:圆柱的表面积) 三、当堂达标检测 1、完成练习六第1题。 2、完成练习六第2题。 《圆柱的表面积》教学设计11一、教学内容:九年义务教育六年制小学数学人教版第十二册第33-34页的内容。 二、教学目标: 知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。 过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。 情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。 重点:理解并掌握求圆柱体表面积、侧面积的计算方法 难点:能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。 教具:圆柱形模型、剪刀 三、教学过程 (一)创设生活情景,引入新课 我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?” 这节课,我们就来一起学习圆柱的表面积(板书课题) (设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。) (2)引导探究,学习新知 1、认识圆柱的表面 师:我们来做一个“饮料罐”,该怎样做? ? 生:要做一个圆筒,和两个完全相同的圆。 师:用什么形状的纸来做卷筒呢? 同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗? 每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。 (设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。) 2、探究圆柱侧面积的计算。 师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么? 学生观察、思考、议论。 生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。 生2:也就是求圆柱体的表面积。 师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件? 生3:我看只要知道圆的半径和高就可以了。 师:我们来听听这位同学是怎么想的。 生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。 生4:我觉得知道圆的直径和高也可以了。 生5:我还觉得知道圆的周长和高也行。 师:这三位同学都说得很好,那么圆柱的侧面积该怎样求? 生6:因为长方形面积=长×宽 所以圆柱的侧面积=底面周长×高 师:如圆柱展开是平行四边形或正方形,是否也适用呢?学生分组动手操作,动笔验证,得出了同样的结论。 小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。 师板书:圆柱侧面积=底面周长×高 S侧=ch 出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。 (设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。) 3、探究圆柱表面积的计算 师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢? (1) 出示例2 分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。 (设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。) (2) 教学例3 师:在实际生活中,求圆柱的表面积的计算方法有着广泛的应用,我们一起来看例3,应该算几个面?为什么? 学生做完后汇报 师:通过计算,你有哪些收获? 生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。 生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。 (设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。) (3)巩固练习,灵活运用 1、出示牛奶罐、无盖水桶、水管等实物图,引导学生观察思考:计算制作这些物体所用铁皮的面积,各是求哪些面的总面积? 小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。 2、综合练习(只列式,不计算) (1)用铁皮制作圆柱形的通风管10节,每节长9分米,底面周长3.5分米,至少需要铁皮多少平方米? (2)砌一个圆柱形水池,底面直径2.5米,深3米,在池的周围与底面抹上水泥,抹水泥的面积是多少平方米? (3)一个圆柱形的油桶,底面半径4分米,高1米2分米,制这个油桶至少要用铁皮多少平方米? (设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。) 3、实践与应用 小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。 (设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。) (4)全课小结 在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管-的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。 板书 圆柱的表面积 圆柱的表面积=两个底面积+侧面积 圆柱的侧面积=底面周长× 高 长方形的面积= 长 × 宽 《圆柱的表面积》教学设计12教学内容: 青岛版教材五四分段五年级下册第三单元第二个信息窗圆柱的表面积。 教学目标: 1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。 2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。 3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。 教学重点: 理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。 教学难点: 圆柱侧面积计算公式的推导过程。 教学用具: 茶叶盒,剪刀,计算器。 教学过程: 一、创设情境,导入新课 师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说) 二、动手操作,探究新知 1.介绍圆柱的侧面积、底面积和表面积。 师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。) 2.创疑激趣。 师:我们知道,圆柱的底面是圆,我们已经会求圆的面积,可是圆柱的侧面是一个曲面,我们又该怎样求它的面积呢? 3.小组合作探究。 师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。) 4.小组汇报。 5.教师小结,课件演示。 师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。 6.学习计算圆柱表面积。 师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。) 三、运用知识,解决问题 师:下面我们便利用学过的知识解决一些问题。 1.只列式不计算。订正时,让学生说想法。 2.完整解答下面各题。 让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。) 四、知识拓展 将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。 师:增加了几个面?是怎样的两个面? (课件演示) 五、全课总结 师:通过本节课的学习,你有什么收获? 《圆柱的表面积》教学设计13教学内容: 九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题 教学目标: 1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法. 2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。 3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。 教具准备: 圆柱形的物体,圆柱侧面的展开图 教学重点: 理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法. 教学难点: 根据实际情况来计算圆柱的表面积。 教学过程: 一、复习 下面()图形旋转会形成圆柱。 二、认识侧面积的意义和计算方法。 1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。 问:你能想办法算出这张商标纸的面积吗? ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。 ⑵交流:你们是怎么算的? 沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。 ⑶讨论:商标纸的面积就是圆柱中哪个面的面积? 观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系? 使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。 2、出示例1中的罐头。 ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便? ⑵出示数据:底面直径11厘米高:15厘米 ⑶学生算出商标纸的面积。 ⑷交流:你是怎么算的?先算什么?再算什么? 3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。 追问:怎么算圆柱的侧面积? 圆柱的侧面积=底面周长×高 长方形的面积=长×宽. 4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积? 5.独立完成“练一练”第1题 三、认识表面积的意义和计算方法。 1、出示例3中的圆柱。 ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米? ⑵让学生算一算后交流。师板书: 长:3.14×2=6.28(厘米)宽:2厘米 ⑶圆柱的两个底面的直径和半径分别是多少厘米? 板书:直径2厘米半径1厘米 2、引导画出圆柱的展开图。 ⑴这个圆柱有几个面?分别是什么? ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大? ⑶在书上方格纸上画出这个圆柱的展开图。 ⑷交流:你是怎么画的? 3、认识圆柱的表面积。 ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积? 板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积 ⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。 4、练习:完成“练一练”第2题。 ⑴各自练习,并指名板演。 ⑵对照板演,讨论: 这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢? 想一想:如果知道的是圆的周长呢? 四.总结反思 1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题? 2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢? 畅谈体会。 五、巩固应用 1.完成练习六第1题。 注意指导学生思考问题要求的是圆柱的哪个面。 2.完成练习六第2题。 先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面? 教学反思: 本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。 1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。 2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。 3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。 《圆柱的表面积》教学设计14教学内容:九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题 教学目标:1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法. 2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。 3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。 教具准备: 圆柱形的物体,圆柱侧面的展开图 教学重点:理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法. 教学难点:根据实际情况来计算圆柱的表面积。 设计理念:教学中注意让学生在引导中发现与理解圆柱的侧面积和表面积的计算方法。先从学生的实际生活入手,通过操作、观察与推理,理解商标纸的面积就是圆柱的侧面积。在此基础上,再引导学生在方格纸上画出圆柱表面积的展开图,利用表象来尝试归纳计算方法。自主实验、自主探索、自主概括是本课的基本特征。 教学步骤教师活动学生活动 一.复习回忆一、复习 1.指名学生说出圆柱的特征. 2.口头回答下面问题. (1)一个圆形花池,直径是5米,周长是多少? (2)长方形的面积怎样计算? 学生回答后,板书:长方形的面积=长×宽. 回忆特征,口答。 二.自主探索,一、认识侧面积的意义和计算方法。 1.出示例2的情景图,引导学生思考:商标纸的面积大约是多少平方厘米,就是求圆柱的什么? 2.学生拿出课前准备的类似例2的物体,摸一摸,看一看,理解得出商标纸的面积就是求圆柱的侧面积。 师板书:圆柱的侧面积 3.操作实验,认识侧面积的计算方法。 (1)请学生先想一想,如果把圆柱侧面的商标纸沿高剪开再展开,它会是什么形状? (2)学生拿出贴有商标纸的学具饮料罐,沿着它的一条高剪开,然后展开,观察是什么形状。 (3)引导生观察,进一步思考得到的商标纸的长和宽跟圆柱体有什么关系呢?如何计算商标纸的面积? (4)概括提升:根据它们之间的这种关系,圆柱的侧面积应该怎样算?为什么? 师板书: 圆柱的侧面积=底面周长×高 长方形的面积=长昂×宽. 4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积? 5.独立完成“练一练”第1题 二、认识表面积的意义和计算方法。 1.出示例3。让学生对照直观图,说说圆柱的侧面和底面的位置,同座互相用学具指一指。 2.思考:沿高展开后得到的长方形的长和宽分别是多少厘米?两个底面分别是多大的圆? 3.要求:闭上眼睛想一想,圆柱的展开图是什么形状? 4.试一试,在书中的方格纸上画出这个圆柱的展开图,再将学生所画的展开图进行交流与展示。 5.观察展开图,想一想圆柱表面有哪些部分组成? 6.教师小结,指出圆柱的侧面积与两个底面积的和,叫做圆柱的表面积。 师板书:圆柱的表面积。 7.引导学生概括:怎样计算圆柱的表面积?圆柱的表面积与侧面积有什么关系? 师板书:圆柱的表面积=侧面积+两个底面积 8.学生在小组里讨论,然后算一算这个圆柱的表面积。教师注意指导学生的答题格式。 生独立思考 学生动手操作 学生联想 动手操作 仔细观察、归纳、概括 学生联想,师相机指导。 独立练习 学生用学具指 借助学具独立思考 学生进行空间想象 学生在方格纸上画 学生进行归纳、概括 先讨论,再独立算,然后交流汇报 三.巩固应用 1.完成“练一练”第2题 可以先让学生分别算出有关圆柱的侧面积和底面积,再算出侧面积与两个底面积大和。 2.完成练习六第1题。 注意指导学生思考问题要求的是圆柱的哪个面。 3.完成练习六第2题。 先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?学生独立练习 小交流,再练习 四.总结反思1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题? 2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?畅谈体会。 发散思考 《圆柱的表面积》教学设计15教材分析: 《圆柱的表面积》是人教版版小学数学六年级下册第二单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。 设计理念: 圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。动手实践,主动探索和合作学习是小学生学习数学的重要方式。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。本节课,我试图通过让学生动手,让学生“自由结合”进行探索,在为学生提供主动发展的时间和空间中实现以下 教学目标: 知识技能:1。通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。2。会正确计算圆柱的侧面积和表面积。 数学思考:运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。 问题解决;使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。 情感态度:让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。 教学重点:动手操作展开圆柱的侧面积 教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。 教具准备: 圆柱表面展开图 学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。 教学过程: 一、创设情境,引起兴趣。 拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的? 想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面) 那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想) 二、自主探究,发现问题。 1、探究圆柱侧面的计算方法。 教师提问:将圆柱体的侧面展开,会是什么形状的呢? 这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高) 长方形的面积=圆柱的侧面积 即 长×宽 =底面周长×高 所以, 圆柱的侧面积=底面周长×高 S 侧 = C × h 如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 2、研究圆柱表面积 (1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。 学生测量,计算表面积。 (2)、圆柱体的表面积怎样求呢? 得出结论:圆柱的表面积=圆柱的侧面积+底面积×2 (3)、动画:圆柱体表面展开过程 三、实际应用 四、回顾全课 本节课你收获了什么,有什么遗憾。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。