标题 | 探索学习应用题思维能力 |
范文 | 探索学习应用题思维能力 内容提要: 本文从“解析应用题数量关系,培养学生思维的逻辑性;通过一题多问的训练,促进学生思维的灵活性;运用一题多变的训练,促进和增强学生思维的深刻性;通过一题多解,培养学生思维的广阔性”四个方面阐述了在小学数学应用题教学中,培养学生思维能力的探索和实践。 关键词:解析关系 一题多问 一题多变 一题多解 在进行小学数学应用题教学中,我们如果能帮助学生形成正确的思维规律,掌握了正确的思维方法,学生就能做到举一反三,切实提高解答应用题的能力。为切实提高学生的解题能力,在长期从事小学数学教学的教学实践中,我从以下几方面进行了探索。 一、解析应用题数量关系,培养学生思维的逻辑性。 在分析应用题的已知条件和问题之间的数量关系,探求解题途径时,由于思维过程不同,一般是用分析法,即从应用题提出的问题出发,找出解题所需的的条件,还有一种是用综合法,即从应用题的已知条件出发,推出所要求的问题。但对于一些较复杂的应用题,还可以利用其它的一些方法,显示数量关系,从而找到解题途径。 例1、甲、乙两个工程队,因工作需要,要把两队人数调整,甲队用自己人数的 1/6 与乙队人数的 1/7 调换,交换后,两队人数相等。问原来甲、乙两队人数的比是几比几? 这题目学生直接列式解答有一定的难度,可考虑引导学生设具体值进行解答。设甲队原有60人,乙队原有X人,甲队人数的 1/6 则为:60× 1/6 =10(人)。乙队人数的 1/7 为 1/7 X人。将甲队人数的 1/6 与乙队人数的 1/7 调换后,甲队现有人数:60-10+ 1/7 X,乙队现有人数为:X- 1/7X+10。根据题意可得:60-10 + 1/7 X = X- 1/7 X+10。解得:X=56,即如果甲队原有人数为60人,乙队原有人数则为56人。因此可得,甲、乙两个工程队原有人数的比为:60∶56 = 15∶14 。 二、 通过一题多问的训练,促进学生思维的灵活性。 在数学教学中,如果能利用相同的条件,启发学生通过联想,提出不同问题,可以不断促进学生思维的灵活性。 例2、“六年级有女生45人,比男生少 1/10 ” ,请学生提出问题,我们可启发学生提出下列的问题: (1)、六年级男生有多少人? (2)、六年级女生比男生少几人? (3)、六年级男生比女生多几分之几? (4)、六年级男生占全年级总人数的几分之几? (5)、六年级女生占全年级总人数的几分之几 ? (6)、六年级有学生多少人? 三、运用一题多变的训练,促进和增强学生思维的深刻性。 运用一题多变的练习,有助于启发引导学生分析比较其异同点,抓住问题的实质,加深对本质特征的认识,从而更好地区分事物的各种因素,形成正确的认识,进而更深刻地理解所学知识,促进和增强学生思维的深刻性。 例3、某人计划16天加工480个零件,加工了4天后,由于进行了技术革新,工作效率提高了 1/3 ,求这批零件可以提前几天完成? 一般解答:16-4-(480-480÷16×4)÷=3(天)。 巧妙解法一:16-4-(16-4)÷(1+ 1/3 )=3(天)。 巧妙解法二:设原来的.工作效率为3,后来的工作效率则为4(1+3),因此可得:16-4-(16-4)÷(1+3)=3(天)。 在引导学生解答了这题后,我可再启发学生从下列几方面条件作“一题多变”,并解答出来。 1、改变已知条件中某一个条件:如:变“工作效率提高了 1/3 ”为“工作效率是原来的 4/3 ”。再启发学生学生进行解答提前完成的天数为:16-4-(16-4)÷ 4/3 = 3(天)。 2、改变结论:如:“变提前几天完成?”为“实际共用几天就可以完成?”然后引导学生进行解答实际完成的天数为::4+(16-4)÷(1+ 1/3 )=13(天)。 3、和“工程问题”类比:变“计划16天加工480个零件”为“计划1 6天加工一批零件”,再让学生进行讨论并解答:设原来的工作效率为3,后来的工作效率则为4(1+3),则得提前的天数为:16-4-(16-4)÷(1+3)=3(天)。 4、和“比例问题”类比,变“计划16天加工480个零件”为“计划16天加工一批零件”,再请学生进行解答: 设可提前X天完成,则得: (1+ 1/3 )×(16-4-X)=1×(16-4) 解得:X=3 5、变更命题:如,变“工作效率提高了 1/3 ,求这批零件可以提前几天完成?”为“提前3天完成,求工作效率提高了百分之几?”再让学生分析并解答,工作效率提高了:3÷(16-4-3)= 1/3 。 这样,通过一题多变的练习,不断加深了学生对数量关系的理解,使学生的思维从具体不断地向抽象过渡。发展了逻辑思维,提高了学生分析、解答应用题的能力。 四、通过一题多解,培养学生思维的广阔性 通过培养学生进行一题多解,可以根据实际情况,从不同角度启发诱导学生得到新的解题思路和解题方法,沟通解与解之间的内在联系,选出最佳解题方案,从而训练了思维的灵活性。 例1、某班有学生50人,男生是女生的 2/3 ,女生有多少人? 我引导学生用下列各种方法进行求解: (1)用分数方法解:50÷(1+ 2/3 )=30(人) (2)用方程方法解:X+2/3 X=50 或X(1+ 2/3 )=50 X=30 (3)用归一方法解:50÷(2+3)×3=30(人) (4)用按比例分配方法解:50× 2 /3+2 =30(人) 例2、某工厂计划10天制造200台机器。结果2 天就完成了计划的25%。照这样计算,可以提前几天完成任务? 这题我也引导学生用以下几种方法进行解答: 1、一般方法进行解答:10-200÷(200×25%÷2)=2(天) 2、把计划产量看作“1”。 (1)、10-1÷(25%÷2)=2(天) (2)、10-2×(1÷25%)=2(天) (3)、10-(1-25%)÷(25%÷2)-2=2(天) 3、把实际天数看作“1”。 10-2÷25%=2(天) 这样,培养学生从多种角度,不同方向去分析、思考问题,克服了思维定势的不利因素,开拓思路,运用知识的迁移,使学生能正确、灵活地解答千变万化的应用题。能做到大纲要求的“根据应用题的具体情况,灵活运用解答方法。” 通过以上形式多样的练习,不仅调动了学生浓厚的学习兴趣,更重要的是沟通了知识间的内在联系,使知识深化,而且可以达到以点带面,举一反三,触类旁通的目的。 培养学生的创新意识和创新精神,关键在于教师。凡学生能够探索出来的,决不替代;凡学生能够独立发现的绝不暗示,让学生从生活中学习,从思索中学习,从合作交流中学习;尽可能多给一点思考的时间,多给一点活动的空间,多给一点表现自己的机会,让学生多一点创造的信心,多一点成功的体验。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。