标题 | 圆柱体积教学设计 |
范文 | 圆柱体积教学设计(通用17篇) 作为一无名无私奉献的教育工作者,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那要怎么写好教学设计呢?下面是小编为大家整理的圆柱体积教学设计,希望对大家有所帮助。 圆柱体积教学设计 篇1一、教学目标 【知识与技能】 掌握圆柱的体积计算公式,能够正确计算圆柱的体积。 【过程与方法】 通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。 【情感态度价值观】 感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。 二、教学重难点 【教学重点】 圆柱的体积公式。 【教学难点】 圆柱体积公式的推导过程。 三、教学过程 (一)引入新课 提问:长方体和正方体的体积公式是什么? 预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体 (正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。 (二)探索新知 1.圆柱体积公式的猜想 在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。 提问:长方体和正方体的体积相等吗? 预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。 追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的体积公式可能是什么? 预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。 2.圆柱体积公式的推导 回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。提问:圆柱可以转化成已知体积公式的哪个图形呢? 预设:可以把圆柱转换成长方体。 让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢? 预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的图形就越接近长方体。 组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。 预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。 3.圆柱体积公式的推出 提问:圆柱的体积公式是什么? 预设:圆柱的体积=底面积×高 用大写字母V表示圆柱的体积,S表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。 预设:V=Sh 教师强调字母V、S是大写,h是小写。 追问:回顾探究圆柱体积公式的过程,有哪些心得体会? 预设1:可以用长方体体积公式推导出圆柱体体积公式; 预设2:把圆柱转化成长方体,与探索圆面积的方法类似; 预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。 (三)课堂练习 试一试 一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米? (四)小结作业 提问:通过本节课的学习有什么收获? 课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。 四、板书设计 圆柱体积教学设计 篇2教学目标: 1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。 2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。 3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。 教学重点: 理解和掌握圆柱的体积计算公式,会求圆柱的体积 教学难点: 理解圆柱体积计算公式的推导过程。 教学用具: 圆柱体积演示教具。 教学过程: 一、复述回顾,导入新课 以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。) 1、说一说: (1)什么叫体积?常用的体积单位有哪些? (2)长方体、正方体的体积怎样计算?如何用字母表示? 长方体、正方体的体积=( )×( )用字母表示( ) 2、求下面各圆的面积(只说出解题思路,不计算。) (1)r=1厘米 ;(2)d=4分米; (3)C=6.28米。 (二)揭示课题 你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题) 二、设问导读 请仔细阅读课本第8-9页的内容,完成下面问题 (一)以小组合作完成1、2题。 1、猜一猜,圆柱的体积可能等于( )×( ) 2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系 (1)圆柱的底面积变成了长方体的( )。 (2)圆柱的高变成了长方体的( )。 (3)圆柱转化成长方体后,体积没变。因为长方体的体积=( )×( ),所以圆柱的体积=( )×( )。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为( ) [汇报交流,教师用教具演示讲解2题] (二)独立完成3、4题。 3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积? 先求底面积,列式计算( ) 再求体积,列式计算( ) 综合算式( ) 4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“( )×( )”(杯子厚度忽略不计) 【要求:完成之后以小组互查,有争议之处四人大组讨论。】 教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。 三、自我检测 1、课本9页试一试 2、课本9页练一练1题(只列式,不计算) 【要求:完成后小组互查,教师评价】 四、巩固练习 课本练一练的2、3、4题 【要求:组长先给组员讲解题思路,然后小组内共同完成】 教师进行错例分析。 五、拓展练习 1、课本练一练的5题 2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食? 【要求:先组内讨论确定解题思路,再完成】 六、课堂总结,布置作业 1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。 2、作业:课本练一练6题 圆柱体积教学设计 篇3教学目标: 1、使学生能够运用公式正确地计算圆柱的体积和容积。 2、初步学会用转化的数学思想和方法,解决实际问题的能力 3、渗透转化思想,培养学生的自主探索意识。 教学重点: 掌握圆柱体积的计算公式。 教学难点: 灵活应用圆柱的体积公式解决实际问题。 教学过程: 一、复习 1、复习圆柱体积的推导过程 长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。 2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。 二、解决实际问题 1、练习三第4题。 学生独立练习,强调选取有用信息,培养认真审题习惯。 2、练习三第5题。 (1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。 (2)学生选择喜爱的方法解答这道题目。 3、练习三第10题。 指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。 4、练习三第8题。 (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。 (2)在充分理解题意后学生独立完成,集体订正。 4、练习三第9题 (1)学生独立审题后完成。 评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh) 5、练习三第11题。 此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。 (3)三、布置作业 完成练习中未做完的习题 教学反思 第五课时特别关注 练习三第4题,在教学中必须应该特别关注。 关注理由: 1、有多余条件,是培养学生收集有用信息的契机。 这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0 .5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。 在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。 2、有容易忽视的条件,是培养学生认真审题的契机。 一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。 学生巧解 ——巧求削去部分的体积 今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米? 我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。 同学们的解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。 而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。 圆柱体积教学设计 篇4教学内容: 本内容是六年级下册第8页至第9页。 教材分析: 本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。 学生分析: 学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。 学习目标: 1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。 2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。 3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。 教学过程: 出示教学情境:一个杯子能装多少水呢? 想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积? 让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。 (设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。) 出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办? (设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。) 探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积) 大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据) 长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。 (设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。) 验证:能否将圆柱转化为学过的立体图形? 让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。 思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体? (设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。) 用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。 学生讨论交流: 1、把圆柱拼成长方体后,什么变了,什么没变? 2、拼成的长方体与圆柱之间有什么联系? 3、通过观察得到什么结论? 得到:圆柱的体积=底面积×高 V=Sh=πr2h (设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。) 练习设计: 1、计算下面各圆柱的体积。 (1)S=60cm2 h=4cm (2)r=1cm h=5cm (3)d=6cm h=10cm 2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗? (设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。) 3、试一试: (1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升? (2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少? (设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。) 4、拓展练习: (1)填表: 填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。 (设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏) (2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少? (设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。) 课堂小结:谈谈这节课你有哪些收获? (设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。) 教学反思: 本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。 情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。 圆柱体积教学设计 篇5教学目标 圆柱的体积(1) 圆柱的体积(教材第25页例5)。 探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。 教学重难点 1.掌握圆柱的体积公式,并能运用其解决简单实际问题。 2.理解圆柱体积公式的推导过程。 教学工具 推导圆柱体积公式的圆柱教具一套。 教学过程 复习导入 1、口头回答。 (1)什么叫体积?怎样求长方体的体积? (2)怎样求圆的面积?圆的面积公式是什么? (3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。 2、引入新课。 我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢? 教师板书:圆柱的体积(1)。 新课讲授 1、教学圆柱体积公式的推导。 (1)教师演示。 把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。 (2)学生利用学具操作。 (3)启发学生思考、讨论: ①圆柱切开后可以拼成一个什么立体图形? 学生:近似的长方体。 ②通过刚才的实验你发现了什么? 教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。 (4)学生根据圆的面积公式推导过程,进行猜想: ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的? (5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。 ②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。 (6)推导圆柱的体积公式。 ①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。 教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。 2、教学补充例题。 (1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少? (2)指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? 学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。 (3)出示下面几种解答方案,让学生判断哪个是正确的。 ①50×2.1=105(cm3)答:它的体积是2625px3。 ②2.1m=5250px 50×210=10500(cm3) 答:它的体积是262500px3。 ③1250px2=0.5m2 0.5×2.1=1.05(m3) 答:它的体积是1.05m3。 ④1250px2=0.005m2 0.005×2.1=0.0105(m3) 答:它的体积是0.0105m3。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。 (4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的? 教师板书:V=πr2h。 课堂作业 教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。 答案:“做一做”:1. 6750(cm3) 2. 7.85m3 第1题:(从左往右) 3.14×52×2=157(cm3) 3.14×(4÷2)2×12=150.72(cm3) 3.14×(8÷2)2×8=401.92(cm3) 课堂小结 通过这节课的学习,你有什么收获?你有什么感受? 课后作业 完成练习册中本课时的练习。 第4课时圆柱的体积(1) 课后小结 1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。 2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。 3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。 课后习题 教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。 答案:“做一做”:1. 6750(cm3) 2. 7.85m3 第1题:(从左往右) 3.14×52×2=157(cm3) 3.14×(4÷2)2×12=150.72(cm3) 3.14×(8÷2)2×8=401.92(cm3) 圆柱体积教学设计 篇6教学目标: 1、理解圆柱体积公式的推导过程。 2、能够初步地学会运用体积公式解决简单的实际问题。 3、进一步提高学生解决问题的能力。 教学重、难点: 1、理解圆柱体积公式的推导过程。 2、能够初步地学会运用体积公式解决简单的实际问题。 3、理解圆柱体积公式的推导过程。 教学准备: 圆柱切割组合模具、小黑板。 教学过程: 一、创设情境,生成问题 1、什么是体积?(物体所占空间的大小叫做物体的体积。) 2、长方体的体积该怎样计算?归纳到底面积乘高上来。 3、圆的面积怎样计算? 二、探索交流,解决问题 1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积? (启发学生思考。) 2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。 3、思考: (1)圆柱切开后可以拼成一个什么形体?(长方体) (2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。 (拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。) 4、推导圆柱体积公式 小组讨论:怎样计算圆柱的体积? 学生汇报讨论结果。 长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。 师:圆柱的体积怎样计算?用字母公式,怎样表示? 板书:V=Sh 5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗? 三、巩固应用练习。 1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么? 2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么? 四:课堂小结: 通过这节课你学会了哪些知识,有什么收获? 五:课后作业: 教材第9页,练一练第1、3、4、题 圆柱体积教学设计 篇7一、教学目标 (一)知识与技能 用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。 (二)过程与方法 经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。 (三)情感态度和价值观 通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。 二、教学重难点 教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。 教学难点:转化前后的沟通。 三、教学准备 每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。 四、教学过程 (一)复习旧知,做好铺垫 1、板书:圆柱的体积。 问:圆柱的体积怎么计算?体积和容积有什么区别? 2、揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题) 【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。 (二)探索实践,体验转化过程 1、创设情境,提出问题。 每个小组桌子上有一个没有装满水的矿泉水瓶。 教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书) 预设1:瓶子还有多少水?(剩下多少水?) 预设2:喝了多少水?(也就是瓶子的空气部分。) 预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?) 2、你觉得你能轻松解决什么问题? (1)预设1:瓶子有多少水?(怎么解决?) 学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。 教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度) 小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦! (2)预设2:喝了多少水? 学生:喝掉部分的形状是不规则,没有办法计算。 教师:当物体形状不规则时,我们想求出它的体积可以怎么办? 教师相机引导:能否将空气部分变成一个规则的立体图形呢? 学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么? 引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度) 小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗? 圆柱体积教学设计 篇8探究目标: 1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。 2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。 3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。 4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。 教学重难点: 学生会应用圆柱体积公式解决实际问题。 探究过程: 一、迁移引入 提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。 提问:如果已知的是底面半径和高,该怎么求呢? 二、自主探究 1、出示长方体鱼缸。 要计算这个长方体鱼缸能装多少水,就是求什么? 怎样求这个长方体的容积呢? 2、出示圆柱形鱼缸。 ⑴估测。这个圆柱形鱼缸的容积大约是多少? ⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。 学生可能的回答有: 生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下: ①94.5÷3.14÷2≈15.0(厘米) ②3.14×152×12=8478(立方厘米) 生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米) 生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米) ⑷评价。 组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。 ⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。 ⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克? 3、自学例题。 组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。 三、巩固练习 做教科书第80页“做一做”中的第2题、练习二十一的第5题。 学生独立完成,指名板演,集体评讲。 四、创意作业 学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。 在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大? 圆柱体积教学设计 篇9教学内容: 冀教版小学数学六年级下册第32—34页。 教学目标: 知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。 过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。 情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。 教学重点: 探索并掌握圆柱体积公式,能计算圆柱的体积。 教学难点: 圆柱体积公式的推导过程及简单应用。 教具准备: 两个不易直观比较体积大小的圆柱桶,探索体积的课件 教学时数: 一课时 教学过程: 一、情景导入 1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题? 2.学生观察思考后回答。 生:亮亮和爷爷的生日蛋糕都是圆柱形的。 生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。 3.出示两个圆柱体,学生观察、猜想。 师:同学们这两个圆柱体,哪个大些?(说出理由)生:我认为第一个大一些。生:我认为第二个大些。生:要是能算出体积就好了? 师:是啊,有时我们观察到的大小不一定准确,我们还是通过计算比较大小更准确些。今天我们就一起学习“圆柱的体积” 4.揭示并板书课题:圆柱的体积 (设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。) 二、合作探究 (一)引导回忆 1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识? 2.学生回忆后回答。 3.教师结合学生的回答适当的板书。板书:长方体的体积=底面积×高生:我还想知道怎样求圆柱体积的大小? 师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。 (设计意图:通过创设问题情境,可以引导学生运用已有的生活经验和就知识积极思考,形成任务驱动的探究氛围。 (二)推导、论证“圆柱的体积” 1.引发思考猜想 师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。 生:我们是不是象学过的长方体和正方体体积一样用“底面积×高”呢? 师:同学猜想的很有道理。 师:再回顾我们以前探索圆面积公式时是把圆转化成哪种图形来计算的?(课件演示:圆面积公式的推导)生:我们可以按照这样的方法把圆柱体转化为已经学过的长方体或正方体推导出圆柱体体积。 2.师生合作推导验证 教师用课件演示,学生观察思考。 师:把圆柱体平均分成16份、32份,同样可以拼成一个近似长方体。请同学们观察两次等份的`异同。学生观察思考后回答 生:相同点是都可以拼成一个近似的长方体。 生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。 3.同学们观察很仔细,请你们想想,拼成的近似长方体和圆柱体有什么关系?你发现了什么? 4.小组同学讨论后汇报结果,同时板书。 生: (1)把圆柱拼成长方体后,形状变了,体积不变。 板书:长方体的体积=圆柱的体积 (2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。 师: (1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。 板书:圆柱的体积=底面积×高 ,用字母表示V=Sh 师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。 三、出示例题: 一根圆柱形的木料,底面积是320平方厘米,高是米。这根木料的体积是多少立方厘米? 1.学生读题试算。 2.集体订正。 四、应用与拓展 1.完成教材第34“试一试”。 (1)学生仔细看图,明确题意。 (2)学生自主完成后,全班交流。 五、课堂总结 本节课你有什么收获?还有什么疑问?附:板书 圆柱的体积 长方体的体积=底面积×高 圆柱的体积=底面积×高 教学反思: 本节课的教学体现了: 一、利用迁移规律引入新课,为学生创设良好的学习情境; 二、遵循学生的认知规律,引导学生观察、思考、猜想、论证,调动学生多种感观参与学习; 三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好,达到预期效果。不足之处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。 圆柱体积教学设计 篇10教学目标: 1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题; 2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。 3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。 教学重点: 掌握和运用圆柱体积计算公式进行正确计算。 教学难点: 理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。 教学准备: 1、用于演示把圆柱体积转化成长方体体积的教具。 2、多媒体课件。 教学过程: 一、复习导入、揭示课题 谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高) 1、呈现长方体、正方体和圆柱的直观图。 2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积) 3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。 二、自主探究,精讲点拨 1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢? 2、学生小组讨论、交流。 教师:同学们自己先在小组里讨论一下 (1)你准备把圆柱体转化成什么立体图形? (2)你是怎样转化成这个立体图形的? (3)转化以后的立体图形和圆柱体之间有什么关系? 3、推导圆柱体积公式。 学生交流,教师动画演示。 (1)把圆柱体转化成长方体。 (2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具) (3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。 (4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。) (5)推导圆柱体积公式。 讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。) 教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书: 圆柱的体积 = 底面积×高 V = S h 三、运用公示,解决问题 教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求? ①知道圆柱的底面积和高,可以求圆柱的体积。 练习七的第1题:填表。 ②知道圆柱的底面半径和高,可以求圆柱的体积。 试一试。 ③知道圆柱的底面积直径和高,可以求圆柱的体积。 练一练的第1题:计算下面各圆柱的体积。 ④知道圆柱的底面周长和高,可以求圆柱的体积。 一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少? 四、迁移应用,质疑反馈。 1、判断正误,对的画“√”,错误的画“×”。 2、计算下面各圆柱的体积。 3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。 五、全课小结。 这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。 六、作业布置: 完成作业纸上的习题 教学反思 本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思: 一、学生学到了有价值的知识。 学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。 二、培养了学生的科学精神和方法。 新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。 三、促进了学生的思维发展。 传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。 而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。 不足之处是: 1、 2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。 圆柱体积教学设计 篇11学 科: 数学 教学内容: 最新人教版六年级数学下册第三章《圆柱的体积》 教材分析: 〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标: 教学目标 知识目标: (1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。 (2)通过操作让学生知道知识间的相互转化。 能力目标: 倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。 情感目标: 让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。 教学重点: 掌握和运用圆柱体积计算公式。 教学难点: 推导圆柱体积计算公式的过程。 教具、学具准备: 采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程: 一、情景引入 1、出示圆柱形水杯。 (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的? (2)你能用以前学过的方法计算出这些水的体积吗? (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。 (4)说一说长方体体积的计算公式。 2、出示橡皮泥捏成的圆柱体。 出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢? (有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!) 3、创设问题情景。 (课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗? 刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积) (设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。) 二、新课教学 设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。 (一)学生动手操作探究 1、回顾旧知,帮助迁移 (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以…… (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。 (通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫) 2、小组合作,探究推导圆柱的体积计算公式。 (1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体) 老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。 (2)学生以小组为单位操作体验。 老师引导学生探究: ① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么? ② 如果分割得份数越多,你有什么发现?(电脑演示转化过程) ③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。 (3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体? ②圆柱的体积与拼成后的长方体的体积有什么关系? ③这个长方体的底面积等于圆柱的什么? ④长方体的高与圆柱体的高有什么关系? (二)教师课件演示 1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 ①把圆柱拼成长方体后,形状变了,体积不变。 (板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。 (配合回答,演示课件,闪烁相应的部位,并板书相应的内容。) ③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么? 圆柱体积教学设计 篇12教学内容: 课本第7页圆柱体积 教学目标: 理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提高知识的迁移和转化的能力。 教学重点: 圆柱体积计算 教学难点: 圆柱体积的公式推导 教学关键: 实物演示帮助 教具准备: 圆柱体积演示模型 教学过程: 一、复习铺垫。 1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。) 2、长方体的体积怎样计算? 学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。 板书:长方体的体积=底面积×高 3、拿出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高? 请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的? 怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积? 二、学习探索。 这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。 板书课题:圆柱的体积 出示目标: 1、推导 2、计算 1、圆柱体积计算公式的推导。 教师出示一个圆柱,提问:这是不是一个圆柱?用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?” 学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。 然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形? 大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:) 指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。 把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 小结:可以通过求切拼后的长方体的体积来求圆柱的体积。 板书:“长方体的体积=底面积×高”。 请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 板书:圆柱的体积=底面积×高 如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式:V=Sh 2、自觉书本第7、8页。 3、教学例3。 出示例3。 (1)教师指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? (2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的? ①V=sh=40×1.8=72 答:它的体积是72立方厘米。 ②1.8米=180厘米 V=sh=40×1800=72000 答:它的体积是72000立方厘米。 ③40平方厘米=0.4平方米 V=sh=0.4×1.8=0.72 答:它的体积是0.72立方米。 ④40平方厘米=0.004平方米 V=sh=0.004×1.8=0.0072立方米 答:它的体积是0.0072立方米。 (3)自觉书本第8页例3。提出质疑。 (4)做第9页“试一试”。 三、课堂小结。 通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。 四、巩固练习。练一练1~4题。 五、《作业本》第4页。 圆柱体积教学设计 篇13教学目标 1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。 2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。 3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。 教学重点: 掌握和运用圆柱体积计算公式进行正确计算。 教学难点: 理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。 教学过程: 一、情景导入: 1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗? 学生: 1.比平日多了两个蛋糕。 2.两个蛋糕一个大一个小。 3.蛋糕都是圆柱形的。 2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗? 学生:蛋糕大,意味着圆柱的体积大。 3、教师:那你还知道什么是圆柱的体积吗? 学生:圆柱的体积就是圆柱体占空间的大小。 4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢? 学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。 教师:板书:圆柱的体积 二、课上探究 1、教师:同学们回忆一下我们还学过那些立体图形? 学生:还学过正方体和长方体。 教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点? 学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。 2、猜测圆柱的体积与什么有关 师:拿出圆柱体,让学生猜想圆柱体积与什么有关。 生1.圆柱的体积与圆柱的高有关。 生2.圆柱的体积与圆柱的底面积有关。 生3.圆柱的体积与圆柱的底面周长有关。 生4.圆柱的体积与圆柱的底面半径有关。 3、推导圆柱体积公式 ①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的? 生:把圆转化成近似长方形来求面积的。 ②师:我们一起来回忆把圆转化成近似长方形的过程,(课件) 师:你发现了什么? 生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。 ③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢? 生:把圆柱转化成近似的长方体。 ④师用圆柱体演示转换过程,让学生说怎样转换的。 生:把圆柱平均分成16份拼成一个近似的长方体。 ⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。 课件再次演示把圆柱等分16等份,拼成近似的长方体。 再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么? 生:分成的份数越多,拼成的图形越接近长方体。 ⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么? 学生分组讨论,汇报: 生:长方体的高和圆柱的高相等。 生:长方体的底面积和圆柱的底面积相等。 ⑦师:你是怎么想的? 生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。 ⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。 生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径 师:课件演示长方体的体积=底面积×高 ⑨师:那么圆柱的体积等于什么呢? 生:圆柱的体积=底面积×高 ⑩下面我们再一起回忆一下转化的过程,(课件) 让学生独立填答案,汇报: 三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。 四、学生谈收获。 圆柱体积教学设计 篇14教材版本 《义务教育课程标准实验教科书》 (人教版) 六年级数学下册。 课程标准摘录 1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。 2、探索某些实物体积的测量方法。 学情与教材分析 “圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。 学习目标 1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。 2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。 3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。 4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。 5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。 学习重点 圆柱的体积计算方法 学习难点 圆柱体积计算公式的推导。 教具、学具准备: 1、师:圆柱体积计算公式推导教具,课件。 2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。 教学设想 本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。 教法、学法 演示法、启发引导;实验、合作探究、尝试练习。 评价方案 1、通过小组合作实验完成活动检测目标1、4、5的达成。 2、通过提问检测目标3、4、5的达成。 3、通过评价样题检测目标1、2、4的达成。 评价样题 1、 2、 教学过程 一、激活旧知,引出新知 1、计算下面物体的体积 (1)长方体的长20厘米,宽10厘米,高8厘米。 (2)正方体棱6分米 2、回忆一下圆面积的计算公式是如何推导出来的? [学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。] 教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。 [设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。] 3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么? [设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。] 板书:长方体的体积=底面积×高. [设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。] 圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。 板书:圆柱体所占空间的大小叫做圆柱的体积。 师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积) 二、自主合作,探索新知 1.求圆柱体容器中水的体积 出示长方体容器:问,这是什么? [学情预设:学生可能说出长方体容器。] 问:怎么求长方体容器中水的体积呢? [学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。] 问:如果换成圆柱体容器又如何求其中水的体积呢? [学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器) 2.橡皮泥圆柱体的体积 (出示橡皮泥做成的圆柱体) 问:这是一个什么样的立体图形? 问:它是用橡皮泥做成的。你能想办法求出它的体积吗? [学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。] 3.常用圆柱的体积. 课件出示圆柱体压路机的滚筒的图片。 问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢? [设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。] 小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。 4.探究规律 问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作: 课件出示操作讨论提纲: (1)圆柱体可以转化为什么样的立体图形? (2)转化后的立体图形体积与圆柱的体积大小是否有变化? (3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。 学生讨论,教师参与小组讨论、点拨、操作。 问:下面哪个小组来先进行汇报。 各组派代表边汇报边演示。 [学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。] 问:谁还有补充?(学生补充讲解) 教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。 师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。 结合课件演示讲解。 师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。 师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh) 〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、3、4、5.〕 5、实际应用 (1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗? 例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。 (2)、完成评价样题 〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 〕 三、巩固练习,拓展提高 1、应用公式进行口算: 2、 3、 [设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. ] 四、全课总结,共谈收获 通过今天的学习,你有什么收获? [设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。] 五、课外创新,拓展延伸 长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没 圆柱体积教学设计 篇15教学目标 1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。 2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。 教学重点和难点 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。 教学过程设计 我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积) (一)复习准备 1.什么叫体积?(指名回答) 生:物体所占空间的大小叫做体积。 师:你学过哪些体积的计算公式?(指名回答) 根据学生的回答,板书: 长方体体积=底面积×高 2.圆面积公式是怎样推导出来的? 生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式S=πr2。 (二)学习新课 1.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式? 2.看书自学。 (1)圆柱体是怎样变成近似长方体的? (2)切拼成的长方体与圆柱体有什么关系? (3)怎样计算切拼成的长方体体积? 3.推导圆柱体积公式。 (1)讨论自学题(1)。圆柱体是怎样变成长方体的?(指名叙述)再看看书和你叙述的一样吗? 把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。) (2)动手操作切拼,将圆柱体转化成长方体。 出示两个等底等高圆柱体,让学生比一比,底面积大小一样,高相等,使学生确信,两个圆柱体的体积相等。 请两名同学按照你们的叙述,把圆柱体切拼成长方体。(如有条件,每四人一个学具,人人动手切拼,充分展示切拼过程和公式推导过程。) 现在讨论自学题(2)。 师:这个长方体与圆柱体比较一下,什么变了?什么没变? 生:形状变了,体积大小没变。 (3)推导圆柱体积公式。 讨论:切拼成的长方体与圆柱体有什么关系?(引导学生有顺序的进行叙述,分小组讨论,让学生充分发言。) 小结:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。 师:圆柱的体积怎样计算?用字母公式,怎样表示? 板书: V=Sh (4)利用公式进行计算。 例1 一根圆柱形钢材,底面积是50平方厘米,高2。1米,它的体积是多少? 引导学生审题,说出题目中的已知条件和问题。做这道题还要注意什么? 生:已知圆柱体底面积和高,求圆柱的体积,注意统一单位名称。 2。1米=210厘米 (①用字母表示已知条件) S=50 h=210 (②写出字母公式) V=Sh (③列式计算) =50×210 (④写出答题) =10500 答:它的体积是10500立方厘米。 引导学生总结出做题步骤。 小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,会求出底面积)和高。注意统一单位名称。 (三)巩固反馈 1.圆柱体的底面积3。14平方分米,高40厘米。它的体积是多少? 2.求下面圆柱体的体积。(单位:厘米) 3.填表: 4.一个圆柱形容器,底面半径是25厘米,高8分米。它的容积是多少立方分米? 5.一个圆柱形粮囤,从里面量,底面周长是6。28米,高20分米。它的容积是多少立方米? (四)课堂总结 这节课,你学会了什么?还有什么问题? 生:学会了圆柱体的体积计算公式,并会用公式解答实际问题。 思考题: 一张长方形的纸长6。28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。 课堂教学设计说明 本节教案分三个层次。 第一层次是复习。 第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析和归纳能力。 第二层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。 本节教案特点:充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于玩中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。 圆柱体积教学设计 篇16教学目标: 1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。 2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。 3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。 教学重点: 理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。 教学准点: 掌握圆柱体积公式的推导过程。 教学准备: 圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。 教学过程: 一、情境激趣导入新课 1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么? 2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题) 二、自主探究, 学习新知 (一)设疑 1、从刚才的实验中你有办法得到这个圆柱学具的体积吗? 2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积? 3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头) 师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式 (二)猜想 1、猜想一下圆柱的体积大小可能与什么有关?理由是什么? 2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由? (三)验证 1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程) 2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流) 3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。 4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。 5、通过上面的观察小组讨论: (1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变? (2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系? (3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系? (4) 你认为圆柱的体积可以怎样计算? (生汇报交流,师根据学生讲述适时板书。) 小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。 6、同桌相互说说圆柱体积的推导过程。 7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价) 8、求圆柱体积要具备什么条件? 9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流) 小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。 10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算) 11、练一练:列式计算求下列各圆柱体的体积。 (1)底面半径2cm,高5cm。 (2)底面直径6dm,高1m。 (3)底面周长6.28m,高4m。 三、练习巩固拓展提升 1、判断正误: (1)等底等高的圆柱体和长方体体积相等。………………() (2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....() (3)圆柱的底面积越大,它的体积就越大。............( ) (4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( ) 2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米? 3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢? 四、全课总结自我评价 通过这节课的学习你有什么感受和收获? 教学反思: 圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。 从本节课教学目标的达成来看,较好地体现了以下几方面: 一、创设生活情境,体现数学生活化。 《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。 二、引导学生经历知识探究的全过程。 动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。 三、注重学法指导和数学思想方法的渗透。 “学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。 圆柱体积教学设计 篇17教学目标: 1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。 2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。 3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。 教学重点和难点: 圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。 教 具: 圆柱的体积公式演示教具,圆柱的体积公式演示课件 教学过程: 一、教学回顾 1、交代任务:这节课我们来学习《圆柱的体积》。 2、回忆导入 (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的? (2)、我们都学过那些立体图形的体积公式。 二、积极参与 探究感受 1、猜测圆柱的体积和那些条件有关。(电脑演示) 2、.探究推导圆柱的体积计算公式。 小组合作讨论: (1)将圆柱体切割拼成我们学过的什么立体图形? (2)切拼前后的两个物体什么变了?什么没变? (3)切拼前后的两个物体有什么联系? 课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份??),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。) ③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式) 2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少? 3、要用这个公式计算圆柱的体积必须知道什么条件? 三、练习 1、填空 (1)、圆柱体通过切拼转化成近似的 ( ) 体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体() 。因为长方体的体积等于( ),所以,圆柱体的体积等于( )用字母表示() 。 (2)、底面积是 10平方米,高是2米,体积是( )。 (3)、底面半径是2分米,高是5分米,体积是( )。 2讨论: (1)已知圆柱底面的半径和高,怎样求圆柱的体积 V= 兀r2× h (2)已知圆柱底面的直径和高,怎样求圆柱的体积 V=兀(d÷2)2×h (3)已知圆柱底面的周长和高,怎样求圆柱的体积 V=兀(C÷兀÷2) ×h 3、练习:已知半径和高求体积,已知直径和高求体积。 四、小结或质疑 五、作业 板书设计: 圆柱的体积 长方体的体积=底面积x高 圆柱的体积=底面积x高 V=Sh |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。