网站首页  词典首页

请输入您要查询的范文:

 

标题 高中数学说课稿
范文

实用的高中数学说课稿3篇

作为一名默默奉献的教育工作者,通常需要用到说课稿来辅助教学,通过说课稿可以很好地改正讲课缺点。怎么样才能写出优秀的说课稿呢?以下是小编收集整理的高中数学说课稿3篇,欢迎阅读与收藏。

高中数学说课稿 篇1

一、说教材:

1、地位、作用和特点:

《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以

是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是;

特点之二是: 。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:A、B、C

(2)能力目标:A、B、C

(3)德育目标:A、B

教学的重点和难点:

(1)教学重点:

(2)教学难点:

二、说教法:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课 新课教学

反馈发展

三、说学法:

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出 ,并依

据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

四、教学过程:

(一)、课题引入:

教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的'综合,实现创新精神的延续。

五、板书设计:

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

六、说课综述:

以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对

的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿 篇2

高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

一、内容分析说明

1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:

(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的

试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的

近似值。

二、学校情况与学生分析

(1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。

(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

三、教学目标

复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:

1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

(2)会运用展开式的通项公式求展开式的特定项。

2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。

(2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。

3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。

四、教学过程

1、知识归纳

(1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?

②学生一起回忆、老师板书。

设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。

②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。

(2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书

= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。

③巩固练习 填空

设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。

②变用公式,熟悉公式。

(3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.

展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.

2、例题讲解

例1求 的展开式的第4项的二项式系数,并求的第4项的系数。

讲解过程

设问:这里 ,要求的第4项的有关系数,如何解决?

学生思考计算,回答问题;

老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,

②第4项的系数与的第4项的二项式系数区别。

板书

解:展开式的第4项

所以第4项的系数为 ,二项式系数为 。

选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。

例2 求 的展开式中不含的 项。

讲解过程

设问:①不含的 项是什么样的项?即这一项具有什么性质?

②问题转化为第几项是常数项,谁能看出哪一项是常数项?

师生讨论 “看不出哪一项是常数项,怎么办?”

共同探讨思路:利用通项公式,列出项数的方程,求出项数。

老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。

板书

解:设展开式的第 项为不含 项,那么

令 ,解得 ,所以展开式的第9项是不含的 项。

因此 。

选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。

②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。

例3求 的展开式中, 的系数。

解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。

板书

解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。

而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。

所以 的展开式中 的系数为

例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.

解:展开式中前三项的系数分别为1, , ,

由题意得2× =1+ ,得n=8.

设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.

有理项为T1=x4,T5= x,T9= .

3、课堂练习

1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是

A.6B.12 C.24 D.48

解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.

答案:C

2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是

A.14 B.14 C.42 D.-42

解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·

(-1)r·x ,

当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.

答案:A

3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

解析:∵(x +x )n的展开式中各项系数和为128,

∴令x=1,即得所有项系数和为2n=128.

∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,

令 =5即r=3时,x5项的系数为C =35.

答案:35

五、课堂教学设计说明

1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。

2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。

六、个人见解

高中数学说课稿 篇3

一、教材分析

1、教材内容

本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.

2、教材所处地位、作用

函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.

3、教学目标

(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

的方法;

(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.

4、重点与难点

教学重点(1)函数单调性的概念;

(2)运用函数单调性的定义判断一些函数的单调性.

教学难点(1)函数单调性的知识形成;

(2)利用函数图象、单调性的定义判断和证明函数的单调性.

二、教法分析与学法指导

本节课是一节较为抽象的数学概念课,因此,教法上要注意:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.

2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.

4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.

在学法上:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 14:12:47