标题 | 高中数学说课稿 |
范文 | 有关高中数学说课稿模板合集10篇 作为一名为他人授业解惑的教育工作者,常常需要准备说课稿,借助说课稿可以更好地组织教学活动。我们该怎么去写说课稿呢?以下是小编整理的高中数学说课稿10篇,欢迎阅读,希望大家能够喜欢。 高中数学说课稿 篇1各位老师: 今天我说课的题目是《输入、输出语句和赋值语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计: 一、教材分析 1.教材所处的地位和作用 我们用自然语言或程序框图描述的算法,但是计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句、条件语句和循环语句.。而我们今天所要学习的是前三种算法语句,它们基本上是对应于算法中的顺序结构的。 2.教学的重点和难点 重点:正确理解输入语句、输出语句、赋值语句的作用。 难点:准确写出输入语句、输出语句、赋值语句。 二、教学目标分析 1.知识与技能目标: (1)正确理解输入语句、输出语句、赋值语句的结构。 (2)会写一些简单的程序。 (3)掌握赋值语句中的“=”的作用。 2.过程与方法目标: (1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。 (2)通过模仿,操作,探索的过程,体会算法的基本思想和基本语句的用途,提高学生应用数学软件的能力. 3.情感,态度和价值观目标 (1) 通过对三种语句的了解和实现,发展有条理的思考,表达的能力,提高逻辑思维能力. (2) 学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养. (3) 结合计算机软件的应用, 增强应用数学的意识,在计算机上实现算法让学生体会成功喜悦. 三、教学方法与手段分析 1.教学方法:引导与合作交流相结合,学生在体会三种语句结构格式的过程中,让学生积极参与,讨论交流,充分挖掘三种算法语句的格式特点及意义,在分析具体问题的过程中总结三种算法语句的思想与特征. 2.教学手段:运用计算机、图形计算器辅助教学 四、教学过程分析 1. 创设情境(约5分钟) 在课的开始,我要求学生们举出一些在日常生活中所应用到的有关计算机的例子,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,并告诉他们在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,然后接着问他们知不知道计算机到底是怎样工作的?通过这个问题引出我们今天所要学习的内容。(板出课题) 在这个过程中,我让学生们将课本学习的内容与现实生活联系在了一起,这样能够激起他们对接下来的所要学习内容的兴趣,为整节课的学习打下一个良好的基础。 2.探究新知(约15分钟) 这里我先给出一个题目:用描点法作出函数 的图象,用描点法作函数的图象时,需要先求出自变量与函数的对应值。编写程序,分别计算当 时的函数值。(程序由我在课前准备好,教学中直接调用运行) 程序:INPUT“x=”;x 输入语句 y=x^3+3*x^2-24*x+30 赋值语句 PRINT x 输出语句 PRINT y 输出语句 END (学生们先看,再跟着做,先不必深究该程序如何得来,只要模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力) 之后,我向学生们提问:在这个程序中,他们觉得哪些是输入语句、输出语句和赋值语句?(同学们互相交流、议论、猜想、概括出结论。提示:“input”和“print”的中文意思,还要请学生们注意到在赋值语句中的赋值号“=”与数学中的等号意义不同。) 此过程由老师引导,学生们自己讨论并总结出什么是输入语句、输出语句和赋值语句,这样比老师直接地将知识传授给他们,学习的效果更佳,同时也锻炼了学生们思考问题的能力和概括能力,激发学习兴趣。 然后给出一个思考题:在1.1.2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后请学生作答)这样可以及时应用刚刚学习的内容,并可以将前后所学知识联系起来。 3.例题精析(约12分钟) 在本环节中我为学生们准备了三道例题,这三道例题均选自课本的例2、例3和例4,学生通过这几道例题的讲解,结合计算机程序上机运用,可以掌握在程序设计语言中的前三种算法语句,体会到他们在程序中的意义和作用。 4.课堂精练(约4分钟) P15 练习 1. 提问:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)通过提问启发学生们思考,发散思维。 5.课堂小结(约5分钟) ⑴输入语句、输出语句和赋值语句的结构特点及联系 ⑵应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题 ⑶ 赋值语句中“=”的作用及应用 ⑷编程一般的步骤:先写出算法,再进行编程。 6.布置作业 P23 习题1.2 A组 1(2)、2 [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。 7.板书设计 高中数学说课稿 篇2各位老师大家好! 我说课的内容是人教 版 A版必修2第三章第一节直线的倾斜角与斜率第一课时。 (一) 教材分析 本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。 (二) 学情分析 本节课的 教学 对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上 知道两点确定一条直线, 知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需 从 学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、 巩固 和应用过程。 (三)教学目标 1. 理解直线的倾斜角和斜率的概念, 理解直线的倾斜角的唯一性和斜率的存在性; 2. 掌握过两点的直线斜率的计算公式 ; 3. 通过经 历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力; 4 . 通过斜率概念的建立以及斜率公式的构建,帮助学生进一步体会数形结合的思想,培养学 生严谨求简的数学精神。 重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。 难点: 直线的倾斜角与斜率的概念的形成 ,斜率公式的构建。 (四)教法和学法 课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。 根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用 设置问题串 的形式 , 启发引导 学生 类比、联想,产生知识迁移 ;通过 几何画板演示实验、探索交流 相结合的教学方法激发学生 观察、实验,体验知识的形成过程 ;由此循序渐进 , 使学生很自然达到本节课的学习目标。 ( 五) 教学过程 环节 1.指明研究方向 (3min) 平面上的点可以用坐标表示,也就是几何问题代数化。那么我们生活中见到的很多优美的曲线能否用数来刻画呢? 简介17 世纪法国数学家笛卡尔和费马的数学史 。 【设计意图】 使学生对解析几何的历史以及它的研究方向有一个大致的了解 由此引入课题(直线的倾斜角与斜率) 环节2.活动探究(13min) 【设计意图】 让学生经历探究过程后掌握倾斜角和斜率两个概念,体会概念的产生是自然的,并不是硬性规定的。 (探究活动一:倾斜角概念的得出) 问题1. 如图,对于平面直角坐标系内过两点有且只有一条直线,过一点P的位置能确定吗?如图,这些不同直线的区别在哪里? 【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同。从而发现过直线上一点和直线的倾斜程度也能确定一条直线。 问题2. 在直角坐标系中,任何一条直线与x轴都有一个相对倾斜程度,可以用一个什么样的几何量来反映一条直线与x轴的相对倾斜程度呢? 【设计意图】引导学生探索描述直线的倾斜程度的几何要素, 由此引出倾斜角的概念:直线L与x轴相交,我们取x轴为基准,x轴正向与直线L向上的方向之间所成的角α叫做直线L的倾斜角。 问题3. 依据倾斜角的定义,小组合作探究倾斜角的范围是多少? (探究活动二:斜率概念的得出) 问题4. 日常生活中,还有没有表示倾斜程度的量? 问题5 . 如果使用“倾斜角”的概念,坡度实际就是 倾斜角的正切值,由此你认为还可以用怎样的量来刻画直线的倾斜程度? 由学生已知坡度中“前进量”不能为0 ,补充 倾斜角 是90゜的直线 没有斜率 【设计意图】 迁移、类比得出 我们把 一条直线的 倾斜角 的正切值叫做 这条 直线的 斜率 , 让学生感受数学概念来源于生活,并体验从直观到抽象的过程培养学生观察、归纳、联想的能力。 环节 3.过程体验(斜率公式的发现)(10min) 问题6. 两点能确定一条直线,那么两点能确定一条直线的斜率么? 先由每名学生各自举出两个特殊的点。例如A(1,2)、B(3,4),独立研究如何由这两点求斜率,再通过学生相互讨论,师生共同交流提炼出解决问题的一般方法,进而把这种方法迁移到一般化的问题上来。得出斜率公式k=y2y1。 为了深化对公式的理解,完善对公式的认识,我设计了如下三个思考问题: 思考1:如果直线AB//x轴,上述结论还适用吗? 思考2:如果直线AB//y轴,上述结论还适用吗? 思考3:交换A、B位置,对比值有影响吗? 在学生充分思考、讨论的基础上,借助信息技术工具,一方面计算 的 值,另一方面计算倾斜角的正切值。让学生亲自操作几何画板,改变直线的倾斜程度,动态演示可以把教科书第84页图3.1-4所示的各种情况都展示出来,形象直观,可使学生更好的把握斜率公式。 环节4. 操作建构(10min) 第一部分( 教材例一 ) : 如图,已知A(3,2),B(-4,1),C(0,-1), 求 直线AB,BC,CA的斜率,并判断倾斜角是锐角还是钝角。 学生独立完成后,请三位学生作答,师生共同评析,明确斜率公式的运用,强调可以从形的角度直接判断直线的倾斜角是锐角还是钝角,也可由直线的斜率的正负判断。 第二部分 ( 教材例二 ) : 在平面直角坐标系中,画出经过原 点且斜率分别为1,-1,2及-3的直线 本题要求学生画图,目的是加强数形结合,我将请两位同学上台板演,其余同学在练习本上完成,因为直线经过原点,所以只要在找出另外一点就可确定,再推导斜率公式时,学生已经知道,斜率k的值与直线上P1,P2的位置无关,因此,由已知直线的斜率画直线时,可以再找出一个特殊点即可。 环节 5.小结作业(4min) 1、本节课你学到了哪些新的概念?他们之间有什么样 的关系? 2、怎样求出已知两点的直线的斜率? 3 、本节课你还有哪些问题? 两点 直线 倾斜角 斜率 一点一方向 作业: 必做题: P.86 第1,2,题 选做题: P.90 探究与发现:魔法师的地毯 以上五个环节环环相扣,层层深入,以明线和暗线双线渗透。并注意调动学生自主探究与合作交流。注意教师适时的点拨引导,学生主体地位和教师的主导作用 得以 体现。能够较好的实现教学目标,也使课标理念能够很好的得到落实。 (六) 板书设计 3.1.1 直线的倾斜角与斜率 1定义: 倾斜角 学生板演 斜率 2.斜率k与倾斜角之间的关系 3.斜率公式 高中数学说课稿 篇3一、说教材 1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。 2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。 二、说教学目标 根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为: 1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。 2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。 三、说教法 本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。 四、说学法 我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。 好学教育: 因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。 高中数学说课稿 篇4一、教材分析 1.《指数函数》在教材中的地位、作用和特点 《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。 此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2.教学目标、重点和难点 通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下: (1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题; (2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力; (3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。 (4)教学重点:指数函数的图象和性质。 (5)教学难点:指数函数的图象性质与底数a的关系。 突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、教法设计 由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。 3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。 4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。 三、学法指导 本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试: 1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 四、程序设计 在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。 1.创设情景、导入新课 教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。 学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。 设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备; 2.启发诱导、探求新知 教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。 学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。 设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。 3.巩固新知、反馈回授 教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。 高中数学说课稿 篇5尊敬的各位评委、各位老师大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。 一、教学背景的分析 1.教材分析 直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。 2.学情分析 我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。 根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标: 3.教学目标 (1)了解直线的方程的.概念和直线的点斜式方程的推导过程及方法; (2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程 ; (3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律; (4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。 4. 教学重点与难点 (1)重点: 直线点斜式、斜截式方程的特点及其初步应用。 (2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。 二、教法学法分析 1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。 2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。 下面我就对具体的教学过程和设计加以说明: 三、教学过程的设计及实施 整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念: 温故知新,澄清概念----直线的方程 深入探究,获得新知--------点斜式 拓展知识,再获新知--------斜截式 小结引申,思维延续--------两点式 平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。 (一)温故知新,澄清概念----直线的方程 问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系? [学生活动] 通过动手画图,思考并尝试用语言进行初步的表述。 [教师活动] 对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。 [设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。 问题二:若直线经过点A(-1, 3),斜率为-2,点P在直线l上。 (1) 若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是 ; (2)画出直线l,你能求出直线l的方程吗? (3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的关系式? [学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。 [教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点 A外),点P与定点A(-1, 3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。 [设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。 (二)深入探究,获得新知----点斜式 问题三: ① 若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。 ②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线? [学生活动] ①学生叙述,老师板书,强调斜率公式与点斜式的区别。 ②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。 [设计意图] 由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。 问题四:分别求经过点且满足下列条件的直线的方程 (1) 斜率;(2)倾斜角; (3)与轴平行 ;(4)与轴垂直。 [练习]P95.1、2。 [学生活动]学生独立完成并展示或叙述,老师点评。 [设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。 (三)拓展知识,再获新知----斜截式 问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。 (2)若直线l斜率为k,且与y轴的交点是 P(0,b),求直线l的方程。 [学生活动]学生独立完成后口述,教师板书。 [设计意图] 由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。 [练习]P95.3。 [设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。 (四)小结引申,思维延续----两点式 课堂小结 1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。) 2、哪些地方还没有学好? 问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。 (2)直线l过点(2,-1)和点(3,-3),求直线l的方程。 [学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。 [教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。 [设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。 分层作业 必做题:P100.A组:1.(1)(2)(3)、5. 选做题:P100.A组:1.(4)(5)(6). [设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。 四、教学特点分析 (一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。 (二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.你会求直线在轴上的截距吗?4.观察方程 ,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。 (三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。 高中数学说课稿 篇6一、教学目标 (一)知识与技能 1、进一步熟练掌握求动点轨迹方程的基本方法。 2、体会数学实验的直观性、有效性,提高几何画板的操作能力。 (二)过程与方法 1、培养学生观察能力、抽象概括能力及创新能力。 2、体会感性到理性、形象到抽象的思维过程。 3、强化类比、联想的方法,领会方程、数形结合等思想。 (三)情感态度价值观 1、感受动点轨迹的动态美、和谐美、对称美。 2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。 二、教学重点与难点 教学重点:运用类比、联想的方法探究不同条件下的轨迹。 教学难点:图形、文字、符号三种语言之间的过渡。 三、、教学方法和手段 教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。 教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。 教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。 四、教学过程 1、创设情景,引入课题 生活中我们四处可见轨迹曲线的影子。 演示:这是美丽的城市夜景图。 演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。 演示建筑中也有许多美丽的轨迹曲线。 设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。 2、激发情感,引导探索 靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。 高中数学说课稿 篇7各位老师你们好!今天我要为大家讲的课题是 首先,我对本节教材进行一些分析: 一、教材分析(说教材): 1. 教材所处的地位和作用: 本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。 2. 教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: (1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。 3. 重点,难点以及确定依据: 本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点 重点: 通过 突出重点 难点: 通过 突破难点 关键: 下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈: 二、教学策略(说教法) 1. 教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。 2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 3. 学情分析:(说学法) 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 (1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学 生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散 (2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。 (3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 4. 教学程序及设想: (1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。 (2)由实例得出本课新的知识点 (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。 (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。 (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。 (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。 (7)板书 (8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, 教学程序: 课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分 高中数学说课稿 篇8一、说教材 (1)说教材的内容和地位 本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。 (2)说教学目标 根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标: 1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。 2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。 3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。 (3)说教学重点和难点 依据课程标准和学生实际,我确定本课的教学重点为 教学重点:集合的基本概念及元素特征。 教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。 二、说教法和学法 接下来则是说教法、学法 教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。 总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。 三、说教学过程 接着我来说一下最重要的部分,本节课的教学过程: 这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。 第一环节:创设问题情境,引入目标 课堂开始我将提出两个问题: 问题1:班级有20名男生,16名女生,问班级一共多少人? 问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛? 这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。 待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。 安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。 很自然地进入到第二环节:自主探究 让学生阅读教材,并思考下列问题: (1)有那些概念? (2)有那些符号? (3)集合中元素的特性是什么? 安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。 让学生自主探究之后将进入第三环节:讨论辨析 小组合作探究(1) 让学生观察下列实例 (1)1~20以内的所有质数; (2)所有的正方形; (3)到直线 的距离等于定长 的所有的点; (4)方程 的所有实数根; 通过以上实例,辨析概念: (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。 (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。 小组合作探究(2)——集合元素的特征 问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征? 问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么? 集合中的元素必须是确定的 问题5:在一个给定的集合中能否有相同的元素?由此说明什么? 集合中的元素是不重复出现的 问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的 我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。 小组合作探究(3)——元素与集合的关系 问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中? 问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达? a属于集合A,记作a∈A 问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达? a不属于集合A,记作aA 小组合作探究(4)——常用数集及其表示方法 问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示? 自然数集(非负整数集):记作 N 正整数集: 整数集:记作 Z 有理数集:记作 Q 实数集:记作 R 设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。 第四环节:理论迁移 变式训练 1.下列指定的对象,能构成一个集合的是 ① 很小的数 ② 不超过30的非负实数 ③ 直角坐标平面内横坐标与纵坐标相等的点 ④ π的近似值 ⑤ 所有无理数 A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④ 第五环节:课堂小结,自我评价 1.这节课学习的主要内容是什么? 2.这节课主要解释了什么数学思想? 设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。 第六环节:作业布置,反馈矫正 1.必做题 课本习题1.1—1、2、3. 2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。 设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。 四、板书设计 好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下: 集 合 1.集合的概念 2.集合元素的特征 (学生板演) 3.常见集合的表示 4.范例研究 高中数学说课稿 篇9各位评委老师你们好,我是第?号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。 一,教材分析 这部分我主要从3各方面阐述 1, 教材的地位和作用 《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位! 2.根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标: II能力目标;初步培养学生归纳,抽象,概括的思维能力。 训练学生认识问题,分析问题,解决问题的能力 III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。 3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点 教学重点: 教学难点; 二,教法 教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度! 学法 根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。 三,教学程序 1, 创设情境,提出问题 让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。 2, 引导探究,直奔主题。(揭示概念) 参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。 3, 自我尝试,初步应用 在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正) 通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华 5,归纳小结,回顾反思 从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。 知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐步培养学生良好的个性品质目标。 ,6,变式延伸,布置作业 必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。 7板书设计 力图简洁,形象,直观,概括以便学生易于掌握。 四,教学评价 学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础, 以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦! 高中数学说课稿 篇10一、教材分析 1· 教材的地位和作用 在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。 y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。 ⒉教材的重点和难点 重点是对周期变换、相位变换规律的理解和应用。 难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。 ⒊教材内容的安排和处理 函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。 二、目的分析 ⒈知识目标 掌握相位变换、周期变换的变换规律。 ⒉能力目标 培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。 ⒊德育目标 在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。 ⒋情感目标 通过学数学,用数学,进而培养学生对数学的兴趣。 三、教具使用 ①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。 ②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。 四、教法、学法分析 本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。 以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。 五、教学过程 教学过程设计: 预备知识 一、问题探究 ⑴师生合作探究周期变换 ⑵学生自主探究相位变换 二、归纳概括 三、实践应用 教学程序 设计说明 〖预备知识 1我们已经学习了几种图象变换? 2这些变换的规律是什么? 帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。 〖问题探究 (一)师生合作探究周期变换 (1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。 (2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系? (二)学生自主探究相位变换 (1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的? (2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。 设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。 设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。 师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。 〖归纳概括 通过以上探究,你能否总结出周期变换和相位变换的一般规律? 设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。 〖实践应用 (一)应用举例 (1)用五点法作出y=sin(2x+)一个周期内的简图。 (2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换 (3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。 (4)归纳总结 从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____. (二)分层训练 a组题(基础题) 如何完成下列图象的变换: ①y=sin3x→y=sin(3x+1) ②y=sin(x+1) →y=sin(3x+1) b组题(中等题) 如何完成下列图象的变换: ①y=sin3x→y=sin(3x+1) ②y=sin(x+1) →y=sin(3x+1) ③y=sinx →y=sin(3x+1) c组题(拓展题) ①如何完成下列图象的变换: y=sinx →y=sin(3x+1) ②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。 让学生用五点法作出这个图象是为了验证变换方法是否正确。 给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。 这个步骤主要目的是培养学生的探究能力和动手能力。 这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。 a组题重在基础知识的掌握, 由基础较薄弱的同学完成。 b组比a组增加了第③小题, 重在对两种变换的综合应用。 c组除了考查知识的综合应用, 还要求学生对新问题进行探究, 有较大难度,适合基础较好的 同学完成。 作业: (1)必做题 (2)选做题 作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。 六、评价分析 在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。 调节与反馈: ⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。 ⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。 附:板书设计 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。