标题 | 因式分解教案 |
范文 | 因式分解教案锦集五篇 作为一位不辞辛劳的人民教师,通常会被要求编写教案,教案是教学蓝图,可以有效提高教学效率。那么应当如何写教案呢?以下是小编收集整理的因式分解教案5篇,欢迎大家借鉴与参考,希望对大家有所帮助。 因式分解教案 篇1教学目标 教学知识点 使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。 潜力训练要求。 透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。 情感与价值观要求。 透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。 教学重点 1、理解因式分解的好处。 2、识别分解因式与整式乘法的关系。 教学难点透过观察,归纳分解因式与整式乘法的关系。 教学方法观察讨论法 教学过程 Ⅰ、创设问题情境,引入新课 导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b) Ⅱ、讲授新课 1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。 993-99=99×98×100 2、议一议 你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。 3、做一做 (1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________; ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________ (2)根据上面的算式填空: ①3x2-3x=()();②m2-16=()();③ma+mb+mc=()(); ④y2-6y+9=()2。⑤a3-a=()()。 定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。 4。想一想 由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗? 下面我们一齐来总结一下。 如:m(a+b+c)=ma+mb+mc(1) ma+mb+mc=m(a+b+c)(2) 5、整式乘法与分解因式的联系和区别 ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。 6。例题下列各式从左到右的变形,哪些是因式分解? (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x); (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。 Ⅲ、课堂练习 P40随堂练习 Ⅳ、课时小结 本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。 因式分解教案 篇2教学目标: 1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法 3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题 5、体验应用知识解决问题的乐趣 教学重点:灵活运用因式分解解决问题 教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3 教学过程: 一、创设情景:若a=101,b=99,求a2—b2的值 利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。 二、知识回顾 1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。 判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系) (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法 (3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解 (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解 (7)、2πR+2πr=2π(R+r)因式分解 2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。 分解因式要注意以下几点: (1)。分解的对象必须是多项式。 (2)。分解的结果一定是几个整式的乘积的形式。 (3)。要分解到不能分解为止。 3、因式分解的方法 提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法 公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2 4、强化训练 教学引入 师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。 动画演示: 场景一:正方形折叠演示 师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。 [学生活动:各自测量。] 鼓励学生将测量结果与邻近同学进行比较,找出共同点。 讲授新课 找一两个学生表述其结论,表述是要注意纠正其语言的规范性。 动画演示: 场景二:正方形的性质 师:这些性质里那些是矩形的性质? [学生活动:寻找矩形性质。] 动画演示: 场景三:矩形的性质 师:同样在这些性质里寻找属于菱形的性质。 [学生活动;寻找菱形性质。] 动画演示: 场景四:菱形的性质 师:这说明正方形具有矩形和菱形的全部性质。 及时提出问题,引导学生进行思考。 师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义? [学生活动:积极思考,有同学做跃跃欲试状。] 师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。 学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书: “有一组邻边相等的矩形叫做正方形。” “有一个角是直角的菱形叫做正方形。” “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。” [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。] 师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。 试一试把下列各式因式分解: (1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2 (3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y) 三、例题讲解 例1、分解因式 (1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x) (3)(4)y2+y+ 例2、分解因式 1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15= 4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y= 例3、分解因式 1、72—2(13x—7)22、8a2b2—2a4b—8b3 四、知识应用 1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a) 3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2 4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除? 五、拓展应用 1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235) 2、20042+20xx被20xx整除吗? 3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。 五、课堂小结 今天你对因式分解又有哪些新的认识? 因式分解教案 篇3课型 复习课 教法 讲练结合 教学目标(知识、能力、教育) 1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数). 2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力 教学重点 掌握用提取公因式法、公式法分解因式 教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。 教学媒体 学案 教学过程 一:【 课前预习】 (一):【知识梳理】 1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式. 2.分解困式的方法: ⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:平方差公式: ; 完全平方公式: ; 3.分解因式的步骤: (1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解. (2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。 4.分解因式时常见的思维误区: 提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等 (二):【课前练习】 1.下列各组多项式中没有公因式的是( ) A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3 C.mxmy与 nynx D.aba c与 abbc 2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因式的是() 4. 分解因式:x2+2xy+y2-4 =_____ 5. 分解因式:(1) ; (2) ;(3) ; (4) ;(5)以上三题用了 公式 二:【经典考题剖析】 1. 分解因式: (1) ;(2) ;(3) ;(4) 分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。 ②当某项完全提出后,该项应为1 ③注意 , ④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。 2. 分解因式:(1) ;(2) ;(3) 分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。 3. 计算:(1) (2) 分析:(1)此题先分解因式后约分,则余下首尾两数。 (2)分解后,便有规可循,再求1到20xx的`和。 4. 分解因式:(1) ;(2) 分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法, 5. (1)在实数范围内分解因式: ; (2)已知 、 、 是△ABC的三边,且满足 , 求证:△ABC为等边三角形。 分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 , 从已知给出的等式结构看出,应构造出三个完全平方式 , 即可得证,将原式两边同乘以2即可。略证: 即△ABC为等边三角形。 三:【课后训练】 1. 若 是一个完全平方式,那么 的值是( ) A.24 B.12 C.12 D.24 2. 把多项式 因式分解的结果是( ) A. B. C. D. 3. 如果二次三项式 可分解为 ,则 的 值为( ) A .-1 B.1 C. -2 D.2 4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( ) A.61、63 B.61、65 C.61、67 D.63、65 5. 计算:19982002= , = 。 6. 若 ,那么 = 。 7. 、 满足 ,分解因式 = 。 8. 因式分解: (1) ;(2) (3) ;(4) 9. 观察下列等式: 想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。 10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程: 解:由 得: ① ② 即 ③ △ABC为Rt△。 ④ 试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。 四:【课后小结】 布置作业 地纲 因式分解教案 篇4教学目标: 1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。 2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。 3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。 4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。 教学重点: 应用平方差公式分解因式. 教学难点: 灵活应用公式和提公因式法分解因式,并理解因式分解的要求. 教学过程: 一、复习准备 导入新课 1、什么是因式分解?判断下列变形过程,哪个是因式分解? ①(x+2)(x-2)= ② ③ 2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。 x2+2x a2b-ab 3、根据乘法公式进行计算: (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)= 二、合作探究 学习新知 (一) 猜一猜:你能将下面的多项式分解因式吗? (1)= (2)= (3)= (二)想一想,议一议: 观察下面的公式: =(a+b)(a—b)( 这个公式左边的多项式有什么特征:_____________________________________ 公式右边是__________________________________________________________ 这个公式你能用语言来描述吗? _______________________________________ (三)练一练: 1、下列多项式能否用平方差公式来分解因式?为什么? ① ② ③ ④ 2、你能把下列的数或式写成幂的形式吗? (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2 (四)做一做: 例3 分解因式: (1) 4x2- 9 (2) (x+p)2- (x+q)2 (五)试一试: 例4 下面的式子你能用什么方法来分解因式呢?请你试一试。 (1) x4- y4 (2) a3b- ab (六)想一想: 某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用? 因式分解教案 篇5教学目标: 1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力. 2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法. 3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想. 教学重、难点:用提公因式法和公式法分解因式. 教具准备:多媒体课件(小黑板) 教学方法:活动探究法 教学过程: 引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解? 知识详解 知识点1 因式分解的定义 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【说明】 (1)因式分解与整式乘法是相反方向的变形. 例如: (2)因式分解是恒等变形,因此可以用整式乘法来检验. 怎样把一个多项式分解因式? 知识点2 提公因式法 多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1). 探究交流 下列变形是否是因式分解?为什么? (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2; (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn. 典例剖析 师生互动 例1 用提公因式法将下列各式因式分解. (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a); 分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式. 小结 运用提公因式法分解因式时,要注意下列问题: (1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解. (2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数). (3)因式分解最后如果有同底数幂,要写成幂的形式. 学生做一做 把下列各式分解因式. (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2 知识点3 公式法 (1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3). (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2. 探究交流 下列变形是否正确?为什么? (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2. 例2 把下列各式分解因式. (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9. 分析:本题旨在考查用完全平方公式分解因式. 学生做一做 把下列各式分解因式. (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1). 综合运用 例3 分解因式. (1)x3-2x2+x; (2) x2(x-y)+y2(y-x); 分析:本题旨在考查综合运用提公因式法和公式法分解因式. 小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式. 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止. 探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= . 分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差). 学生做一做 若x2+(k+3)x+9是完全平方式,则k= . 课堂小结 用提公因式法和公式法分解因式,会运用因式分解解决计算问题. 各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。 自我评价 知识巩固 1.若x2+2(m-3)x+16是完全平方式,则m的值等于( ) A.3 B.-5 C.7. D.7或-1 2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( ) A.2 B.4 C.6 D.8 3.分解因式:4x2-9y2= . 4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值. 5.把多项式1-x2+2xy-y2分解因式 思考题 分解因式(x4+x2-4)(x4+x2+3)+10. |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。