网站首页  词典首页

请输入您要查询的范文:

 

标题 小学六年级下册数学《圆柱的体积》教案优秀
范文

小学六年级下册数学《圆柱的体积》教案优秀

作为一位杰出的老师,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?下面是小编为大家整理的小学六年级下册数学《圆柱的体积》教案优秀,仅供参考,大家一起来看看吧。

小学六年级下册数学《圆柱的体积》教案优秀 1

教学目标:

1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

教学重点:

理解和掌握圆柱的体积计算公式,会求圆柱的体积

教学难点:

理解圆柱体积计算公式的推导过程。

教学用具:

圆柱体积演示教具。

教学过程:

一、复述回顾,导入新课

以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

1、说一说:

(1)什么叫体积?常用的体积单位有哪些?

(2)长方体、正方体的体积怎样计算?如何用字母表示?

长方体、正方体的体积=( )×( )用字母表示( )

2、求下面各圆的面积(只说出解题思路,不计算。)

(1)r=1厘米; (2)d=4分米; (3)C=6.28米。

(二)揭示课题

你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

二、设问导读

请仔细阅读课本第8-9页的内容,完成下面问题

(一)以小组合作完成1、2题。

1、猜一猜,圆柱的体积可能等于( )×( )

2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的`圆柱之间的关系

(1)圆柱的底面积变成了长方体的( )。

(2)圆柱的高变成了长方体的( )。

(3)圆柱转化成长方体后,体积没变。因为长方体的体积=( )×( ),所以圆柱的体积=( )×( )。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为( )

[汇报交流,教师用教具演示讲解2题]

(二)独立完成3、4题。

3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?

先求底面积,列式计算( )

再求体积,列式计算( )

综合算式( )

4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“( )×( )”(杯子厚度忽略不计)

【要求:完成之后以小组互查,有争议之处四人大组讨论。】

教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

三、自我检测

1、课本9页试一试

2、课本9页练一练1题(只列式,不计算)

【要求:完成后小组互查,教师评价】

四、巩固练习

课本练一练的2、3、4题

【要求:组长先给组员讲解题思路,然后小组内共同完成】

教师进行错例分析。

五、拓展练习

1、课本练一练的5题

2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

【要求:先组内讨论确定解题思路,再完成】

六、课堂总结,布置作业

1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

2、作业:课本练一练6题

小学六年级下册数学《圆柱的体积》教案优秀 2

教学目标:

1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

教学重点:

理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

教学准点:

掌握圆柱体积公式的推导过程。

教学准备:

圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

教学过程:

一、情境激趣导入新课

1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)

二、自主探究, 学习新知

(一)设疑

1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)

师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式

(二)猜想

1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

(三)验证

1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)

2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)

3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的`份数越多时,拼成的图形越接近长方体。

5、通过上面的观察小组讨论:

(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?

(4) 你认为圆柱的体积可以怎样计算?

(生汇报交流,师根据学生讲述适时板书。)

小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。

6、同桌相互说说圆柱体积的推导过程。

7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)

8、求圆柱体积要具备什么条件?

9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)

小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)

11、练一练:列式计算求下列各圆柱体的体积。

(1)底面半径2cm,高5cm。

(2)底面直径6dm,高1m。

(3)底面周长6.28m,高4m。

三、练习巩固拓展提升

1、判断正误:

(1)等底等高的圆柱体和长方体体积相等。()

(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。()

(3)圆柱的底面积越大,它的体积就越大。( )

(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。( )

2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?

3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?

四、全课总结自我评价

通过这节课的学习你有什么感受和收获?

教学反思:

圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

从本节课教学目标的达成来看,较好地体现了以下几方面:

一、创设生活情境,体现数学生活化。

《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。

二、引导学生经历知识探究的全过程。

动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。

三、注重学法指导和数学思想方法的渗透。

“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

小学六年级下册数学《圆柱的体积》教案优秀 3

教学内容:

北师大版数学六年级下册5——6页。

教学目标:

1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学重点:

目标1。

教学难点:

目标2。

教学过程:

活动一:复习旧知,巩固学过的公式。

1、一个直径是100毫米的圆,求周长。

2、一个半径3厘米的圆,求周长和面积。

3、一个长为3米,宽为2米的长方形,它的面积是多少?

4、出示圆柱体的模型,说说它有什么特征?

活动二;探究新知。

1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)

要解决这个问题,就是求什么?

2、圆柱的表面积包括哪几部分?

3、圆柱的表面积的`计算关键在哪一部分?

4、探索圆柱侧面积的计算方法。

1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?

3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。

4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

5)请你来总结一下圆柱侧面积的计算方法。

6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

活动三:新知识的运用。

1、求底面半径是10厘米,高30厘米的圆柱的表面积。

2、教师板书:

侧面积:2╳3.14╳10╳30=1884(平方厘米)

底面积:3.14╳10╳10=314(平方厘米)

表面积:1884+314╳2=2512(平方厘米)

要求按步骤进行书写。

2、试一试。

做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?

求至少需要多少铁皮,就是求水桶的表面积。

这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。

3、练一练。书第6页第1题。

3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。

小学六年级下册数学《圆柱的体积》教案优秀 4

教学内容:

九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

教学目标:

1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

3、引导学生探索和解决问题,体验转化及极限的思想方法。

教学重点:

圆柱体体积的计算.

教学难点:

理解圆柱体体积公式的推导过程.

教具:

多媒体课件、圆柱形容器、水、橡皮泥。

教学过程:

一、激凝导入

师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

(2)生回答。

2、出示橡皮泥捏成的圆柱体。

那你有办法求出这个圆柱体橡皮泥的体积吗?

生(热情的):老师将它捏成长方体或正方体就可以了!

3、创设问题情境。

师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

那怎么办?

学生试说出自己的办法。

师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验、探究新知

1、推导圆柱的体积公式。

师:你们打算怎么去研究圆柱的体积?

小组同学讨论研究的方法。

2、学生动手操作感知

(1)学生以小组为单位操作体验。(操作学具,进行拼组)。

(2)学生小组汇报交流:

近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高.....

(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的`长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

3、教师课件演示圆柱转化成长方体的过程。

4、师生共同推导出圆柱的体积公式:

长方体的体积=底面积高

圆柱的体积=底圆柱面积高

V = Sh

5、巩固公式

①V、S、h各表示什么?

②知道哪些条件就可以求圆柱的体积?

а、知道底面积和高可以直接用公式计算圆柱的体积;

b、知道底面半径和高,可以先计算出底面积,再计算体积;

c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

学生回答后师板书。

6、教学例4、例5。

课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

三、实践练习

1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

同学们,你们知道小林是怎样想的吗?

四、课堂总结;

通过本节课的学习,你有什么收获?

小学六年级下册数学《圆柱的体积》教案优秀 5

教学内容:

P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

教学重点:

掌握圆柱体积的计算公式。

教学难点:

圆柱体积的计算公式的推导。

教学过程:

一、复习

1、复习圆面积计算公式的推导方法及过程。

2、什么叫物体的体积?长方体、正方体的体积公式是什么?(长方体的体积=长×宽×高,正方体的体积=棱长3,长方体和正方体体积的统一公式=底面积×高)

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

2、教学补充例题

(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(2)指名学生分别回答下面的问题:

① 这道题已知什么?求什么?

② 能不能根据公式直接计算?

③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的.

①V=Sh

50×2.1=105(立方厘米)

答:它的体积是105立方厘米。

②2.1米=210厘米

V=Sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

③50平方厘米=0.5平方米

V=Sh

0.5×2.1=1.05(立方米)

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=Sh

0.005×2.1=0.0105(立方米)

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

4、教学例6

(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

(2)学生尝试完成例6。

① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

1、做第21页练习三的第1题.

2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

四、布置作业

练习三第3、4题。

通过批阅作业,发现圆柱体的表面积正确率极低,主要有几方面原因:

1、计算错误;

2审题不认真,单位不统一;

3、灵活解决问题时,没能正确判断所求面积到底包含哪几部分。

为提升正确率,所以今天补充了一节是练习课,主要是指导学生完成教材中的习题。在此,想谈谈练习二的第11、19题。

第11题教材只要求学生根据切面形状进行连线,其实这题应该充分利用挖掘,不仅培养学生的空间观念,同时还可提升学生解决实际问题的能力。所以在教学中,我补充了如下练习:

(1将一根高5分米的圆柱形木料沿底面直径垂直切成两部分,(如11题第2幅图),这时表面积比原来增加了40平方分米。这根圆柱形木料原来的表面积是多少平方分米?

(2一个圆柱的侧面展开是一个正方形,正方形的边长是12.56分米,求这个圆柱体的表积。

第19题解决决起来很繁琐,虽然课堂上我给予了学生十分充足的独立尝试练习时间,但在未给予任何提示的情况下全班仅4人全对,另有4人结果计算正确,但却未换算单位,正确率仅为7.4%。所以下次再教时,此题应加大指导力度。建议:先在小组内讨论“求涂油漆的'面积也就是求什么?”然后强调单位换算,并复习平方米与平方厘米之间的进率(10000),最后再让学生分步列式解答。第2问要求“一共需要多少元”结合生活实际,学生应主动对计算结果取近似值。

第四课时教学反思

开放的设问结硕果

因为临时换课,所以今天是本学期开学以来第一次在学生未预习的情况下教学新课。没有预习,给学生的自主探索以更广阔的空间。当学生提出可以将圆柱的底面分成许多相等的扇形,把圆柱切开,拼成一个近似的长方体后,我请学生们观察并思考“转化后的长方体与圆柱体之间有什么联系呢?”

他们除了发现教材中所提到的体积不变、底面积不变、高不变外,还有不少新发现。如“长方体的长是圆柱体底面周长的一半”,“长方体的宽是圆柱体底面半径”, “圆柱体的侧面积是长方体前后两个面的面积总和”(魏勉)。当学生的发现由底面积涉及到侧面积时,我根据本班学情适时进行了拓展性提问,“将圆柱体转化为长方体,表面积有变化吗?如果有,有怎样的变化?”由此将圆柱体与长方体转化的探究由体积的变化引向了新的层面——表面积。

我将根据学情在练习课中补充相关练习:把一个高15厘米的圆柱体分割成若干份,再拼成一个近似的长方体,表面积增加了90平方厘米。那么这个圆柱的体积是多少?

今天的作业正确率明显提升,但全班有4名学生将圆柱体侧面积与体积公式混淆,列式全错,因此要加强辨析指导。自从让学生“创造”圆柱体表面积的另类推导方法及公式以来,孩子们探索并“创造”新公式的热情不断高涨。虽然,今天由于种种原因没能给学生上课,但他们仍旧将自己的新发现用纸条记录了下来送到我的手中。

创新(一)圆柱体侧面积:圆柱体的体积=(2πrh) :(πrrh)=2:r。(发现者:沈洪鑫)

创新(二)圆柱的体积=圆柱的侧面积÷2×r(发现者:兰晟)

根据这一发现,能够有效提高已知半径和侧面积求体积或已知体积求侧面积的习题。如:一根圆柱形木头的侧面积是37.68平方分米,底面半径是3分米,它的体积是多少平方分米?如果按常规做法为:首先求圆柱体的高37.68÷(3.14×2×3)=2(分米);然后再求圆柱体的体积3.14×32×2=56.52平方分米),共需要6步。如果根据上述发现,解答此题就只需要将37.68÷2×3即可求了正确结果,大大提高速度。

小学六年级下册数学《圆柱的体积》教案优秀 6

教学目标

1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。

2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。

教学重点和难点

圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

教学过程设计

我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)

(一)复习准备

1.什么叫体积?(指名回答)

生:物体所占空间的大小叫做体积。

师:你学过哪些体积的计算公式?(指名回答)

根据学生的回答,板书:

长方体体积=底面积×高

2.圆面积公式是怎样推导出来的?

生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式S=πr2。

(二)学习新课

1.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?

2.看书自学。

(1)圆柱体是怎样变成近似长方体的?

(2)切拼成的长方体与圆柱体有什么关系?

(3)怎样计算切拼成的长方体体积?

3.推导圆柱体积公式。

(1)讨论自学题(1)。圆柱体是怎样变成长方体的?(指名叙述)再看看书和你叙述的一样吗?

把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)

(2)动手操作切拼,将圆柱体转化成长方体。

出示两个等底等高圆柱体,让学生比一比,底面积大小一样,高相等,使学生确信,两个圆柱体的体积相等。

请两名同学按照你们的叙述,把圆柱体切拼成长方体。(如有条件,每四人一个学具,人人动手切拼,充分展示切拼过程和公式推导过程。)

现在讨论自学题(2)。

师:这个长方体与圆柱体比较一下,什么变了?什么没变?

生:形状变了,体积大小没变。

(3)推导圆柱体积公式。

讨论:切拼成的长方体与圆柱体有什么关系?(引导学生有顺序的进行叙述,分小组讨论,让学生充分发言。)

小结:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书: V=Sh

(4)利用公式进行计算。

例1 一根圆柱形钢材,底面积是50平方厘米,高21米,它的体积是多少?

引导学生审题,说出题目中的已知条件和问题。做这道题还要注意什么?

生:已知圆柱体底面积和高,求圆柱的体积,注意统一单位名称。

21米=210厘米 (①用字母表示已知条件)

S=50 h=210 (②写出字母公式)

V=Sh (③列式计算)

=50×210 (④写出答题)

=10500

答:它的体积是10500立方厘米。

引导学生总结出做题步骤。

小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,会求出底面积)和高。注意统一单位名称。

(三)巩固反馈

1.圆柱体的`底面积314平方分米,高40厘米。它的体积是多少?

2.求下面圆柱体的体积。(单位:厘米)

3.填表:

4.一个圆柱形容器,底面半径是25厘米,高8分米。它的容积是多少立方分米?

5.一个圆柱形粮囤,从里面量,底面周长是628米,高20分米。它的容积是多少立方米?

(四)课堂总结

这节课,你学会了什么?还有什么问题?

生:学会了圆柱体的体积计算公式,并会用公式解答实际问题。

思考题:

一张长方形的纸长628分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。

课堂教学设计说明

本节教案分三个层次。

第一层次是复习。

第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析和归纳能力。

第二层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。

本节教案特点:充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于玩中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。

小学六年级下册数学《圆柱的体积》教案优秀 7

一、教学目标

【知识与技能】

掌握圆柱的体积计算公式,能够正确计算圆柱的体积。

【过程与方法】

通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。

【情感态度价值观】

感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。

二、教学重难点

【教学重点】

圆柱的体积公式。

【教学难点】

圆柱体积公式的推导过程。

三、教学过程

(一)引入新课

提问:长方体和正方体的体积公式是什么?

预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体

(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。

(二)探索新知

1.圆柱体积公式的猜想

在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。

提问:长方体和正方体的体积相等吗?

预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。

追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的体积公式可能是什么?

预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。

2.圆柱体积公式的推导

回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。提问:圆柱可以转化成已知体积公式的哪个图形呢?

预设:可以把圆柱转换成长方体。

让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢?

预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的'图形就越接近长方体。

组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。

预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。

3.圆柱体积公式的推出

提问:圆柱的体积公式是什么?

预设:圆柱的体积=底面积×高

用大写字母V表示圆柱的体积,S表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。

预设:V=Sh

教师强调字母V、S是大写,h是小写。

追问:回顾探究圆柱体积公式的过程,有哪些心得体会?

预设1:可以用长方体体积公式推导出圆柱体体积公式;

预设2:把圆柱转化成长方体,与探索圆面积的方法类似;

预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。

(三)课堂练习

试一试

一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?

(四)小结作业

提问:通过本节课的学习有什么收获?

课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。

小学六年级下册数学《圆柱的体积》教案优秀 8

教学内容:

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

PPT课件 圆柱等分模型

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.呈现例4中长方体、正方体和圆柱的直观图。

2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

二、动手操作,探索新知,教学例4

1.观察比较

引导学生观察例4的三个立体,提问

⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

⑵长方体和正方体的体积一定相等吗?为什么?

⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

2.实验操作

⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的`想法。

提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

操作教具,让学生观察。

引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

3.推出公式

⑴提问:拼成的长方体与原来的圆柱有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

⑵想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式

圆柱的体积=底面积高

⑶引导用字母公式表示圆柱的体积公式:V=sh

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式V= sh

三、分层练习,发散思维,教学试一试

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

四、巩固拓展练习

1.做练一练第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

2.做练一练第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

五、小结

这节课我们学习了什么?有哪些收获?还有什么疑问?

六、作业

练习三第1~3题。

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/26 8:42:56