标题 | 八年级数学说课稿 |
范文 | 八年级数学说课稿推荐 作为一位杰出的教职工,有必要进行细致的说课稿准备工作,是说课取得成功的前提。写说课稿需要注意哪些格式呢?以下是小编整理的八年级数学说课稿推荐,欢迎大家借鉴与参考,希望对大家有所帮助。 八年级数学说课稿推荐1一、说教材 (一)本节内容在教材中的地位和作用 本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。 (二)说教学目标 基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标: 知识技能: 1、理解直线y=kx+b与y=kx之间的位置关系; 2、会利用两个合适的点画出一次函数的图象; 3、掌握一次函数的性质. 数学思考: 1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力; 2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。 情感态度: 1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美; 2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。 (三)说教学重点难点 教学重点:一次函数的图象和性质。 教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。 二、说教法学法 1、教学方法 依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法: 1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。 目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。 2、直观教学法——利用多媒体现代教学手段。 目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。 2、学法指导 做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。 1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。 2、指导学生观察图象,分析材料。培养观察总结能力。 三、说教学程序设计 (一)、创设情境,导入新课 活动1:观察: 展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。 课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。 目的有四: 1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深; 2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。 3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。 4、令教师对学生有了更深层次的了解,能更好地把握课堂。 (二)尝试探索、体验新知: 活动1、观察探索: 比较两个函数图象的相同点与不同点? 第一步;根据你的观察结果回答问题。(书中原问题1、2、3) 目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。 第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象? 目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。 活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。 目的:进一步巩固两点作图法,为探究一次函数的性质作准备。 活动3:展示“上下坡”材料,解决象限问题。(多媒体展示) 目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。 活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容) 目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。 八年级数学说课稿推荐2教学目标 根据这一教学内容在教材中所处的地位与作用,以及新课标的要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标: 知识与技能: 1.使学生知道任意两边之和大于第三边。 2.能判断三条线段的长度能否组成三角形。 过程与方法: 1.在学生探索三角形三边规律的过程中,培养学生自主探索学习的能力。 2.在学生探索发现规律后,培养学生自主总结得出结论。 情感、态度与价值观: 1、鼓励学生探索发现,培养学生小问题大钻研的精神。 2、在数学中很注重结论的严谨性,培养学生严谨的学习态度。 本节课的重点、难点:使学生理解任意两边之和大于第三边 教法学法 在教法上采用实验法、以及分组讨论、合作学习的形式,并运用多媒体课件辅助教学,让学生动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。 在学法指导上,我将充分发挥学生的主体作用,留有足够的时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,将学生分成5人学习小组,让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究的课堂教学氛围,将课堂的主动权真正还给学生,让学生在自主活动中得以发展。 教学过程 1、联系生活,提出问题。 出示情景图,找出图中的三角形。把数学问题与生活情境相结合,让数学生活化。学生联系生活说说见到过的三角形,把数学教学与学生的生活体验相联系,生活数学化。从整体上初步感知三角形,再抽象出图形让学生认识,教师并介绍三角形各部分的名称,帮助学生形成三角形的概念。让学生思考:三角形是由三条边组成的,那是不是任意三根小棒都能搭成三角形呢? 2、动手操作,合作探究。 小学生好奇、好动,根据小学生的心理特征,教师要千方百计为学生提供操作的机会,手脑并用,化抽象为具体,让每一个学生参与到教学过程之中,让学生在动手操作中掌握知识、发展智力,在动手操作中激发出创新的潜能,体验到发现的乐趣、成功的愉悦。 第一层次是动手操作,发现问题;为每组同学准备好的4根小棒(10厘米、8厘米、5厘米、2厘米),任选其中的3根围一围。并设计“从中你有什么发现?”为学生自主学习搭建一个平台,让学生在更自由、更广阔的空间中去合作、探索和发现。学生在小组的合作与探究中发现不是任何三根棒都能搭出三角形的。事实推翻了学生头脑中以前的错误认知,激起了思维的矛盾,使学生不得不重新认识三角形三边之间的关系。这种重新认识是学生对三角形三边关系认识上的第一层次。 第二层次是小组合作,探究规律;我抓住契机巧妙设疑:任意选择三根小棒,为什么有的能围成一个三角形,而有的就不行呢? 想不想知道其中的秘密?提出活动二的要求:给你两根小棒,一根10厘米,一根8厘米,你还能配多长的小棒和它们组成三角形?两人合作把小棒的长度量出来,比一比谁配的小棒最短?谁配的小棒最长?课堂上,学生小组的合作交流、形成头脑风暴,我有充分的时间去关注学生的动态生成,多方面的深入了解学生的情况,及时点拨。然后组织学生交流,交流时适时运用几何画板演示验证。从而使学生知道第三条边的长度是有一定范围的,这种初步认识是学生对三角形三边关系认识上的第二层次,也是学生思维发展必然经历的一个阶段。 第三层次是推广验证,得出结论。第一步教师引导学生比较围成三角形的三根小棒的长度,用语言叙述三角形的三边关系;第二步全班交流,教师引导学生把结论写规范。重点帮助学生理解“任意”两字,我这样引导学生思考:刚才活动一中10厘米、8厘米、2厘米不能围成三角形,那10厘米和8厘米的和也大于2厘米的,为什么不能围成三角形?你认为对于三角形三边关系,怎样表达更严密?最后学生终于发现:三角形任意两边之和大于第三边。对“任意”二字的理解,使学生对三角形三边之间关系的认识得到了深化。这种深化的认识和理解是学生对三角形三边关系认识上的第三层次。 3、深化认知,拓展应用。 基础练习在线测试,然后实时反馈测试情况。这部分的练习巩固了基本的知识点,强化教学重点和难点,提高学生对组成三角形的规律的认识,掌握更好的判断方法——较短两条线段之和大于第三条线段,便可构成三角形。 八年级数学说课稿推荐3尊敬的各位评委老师: 大家好! 今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》.下面,我将从教材分析,教学方法,教学过程等几个方面对本课的设计进行说明 一、说教材 全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。 二、教学的目标和要求: 本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标。 1.知识目标: (1)理解全等三角形的概念。 (2)知道全等三角形的性质,能用符号正确地表示两个三角形全等; (3)能熟练找出两个全等三角形的对应角,对应边。 2.能力目标: (1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力; (2)通过找出全等三角形的对应元素,培养学生的识图能力。 3.情感目标: (1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神; (2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。 三、教学重点: 探究全等三角形的性质。 四、教学难点: 正确判断两个全等三角形的对应边,对应角。 五、说教法 教学生观察、归纳的方法 为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。 六、说学法 学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。学生用学具操作体会,最终完成学习过程,达到教学目标。 1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。 2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。 七、教学用具: 剪刀,直尺,三角板 八、教学过程: 首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。直观感知全等形的概念。再让学生思考发现生活中有哪些全等形。 然后,教师安排学生自己动手在一张白纸上任意画上一个三角形,再把两张纸小心的重叠在一起,并固定,然后小心地用剪刀剪出两个三角形,让学生通过动手实践合作交流,直观感知全等三角形的概念,并给出全等三角形的表示方法。 然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念。从实践中感知:一个图形经过平移,翻折,旋转,位置变化了,但形状,大小都没有变。,即平移,翻折,旋转前后的图形全等。 然后,让学生给刚才剪出的两个三角形标上字母,并任意放置,与同桌交流,其一:任何时候两个三角形能够完全重合在一起吗?其二:此时它们的顶点,边,角,有什么特点?学生通过操作交流,从而更深刻理解对应角,对应边,对应点的概念以及关系。 再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。 其次,对学生进行随堂练习,深化知识。练习内容为两个全等三角形,任意摆放,找出它的对应边,对应角,对应顶点。并用符与表示出两个全等三角形。 最后,教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。 九、作业布置 八年级数学说课稿推荐4一、教材分析 1、教材的地位及作用 “分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。 2、教学重点、难点分析: 教学重点:理解并掌握分式的基本性质 教学难点:灵活运用分式的基本性质进行分式化简、变形. 3、教材的处理 学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。 本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。 二、目标分析: 数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标: 1、知识技能: 1)了解分式的基本性质 2)能灵活运用分式的基本性质进行分式变形 2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。 3、解决问题:通过探索分数的基本性质,积累数学活动的经验。 4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。 三、教法分析 1、教学方法 数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。 2、学法指导 现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。 3、教学手段 我所采用的教学手段是多媒体辅助教学法。 四、程序分析 活动1创设情境,引入课题 教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。 在活动中教师要关注: (1)学生对学过的知识是否掌握得较好; (2)学生对新知识的探索是否有深厚的兴趣。 设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。 活动2类比联想,探究交流 教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。 设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。 活动3例题分析运用新知 教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。 在活动中教师要关注: (1)学生能否紧扣“性质”进行分析思考; (2)学生能否逐步领会分式的恒等变形依据。 (3)学生是否能认真听取他人的意见。 活动4练习巩固拓展训练 教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注: (1)大部分学生能否准确、熟练完成任务; (2)学生能否用数学语言表述发现的规律; (3)学生在运算中表现出来的情感与态度是否积极。 设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。 活动5 小结评价布置作业 学生思考在教师的引导下整理知识、理顺思维。 在活动中教师要关注: (1)学生对本节课的学习内容是否理解; (2)学生能否从获取新知的过程中领悟到其中的数学方法。 设计意图:学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思等。帮助学生获得成功的体验和失败的感受,积累学习经验。对所学内容进一步系统化,使学生的知识结构更合理,更完善。 八年级数学说课稿推荐5一、学生起点分析 学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。 二、教学任务分析 本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。 教学目标 【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想 【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。 【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。 教学重难点 【教学重点】多边形内角和定理的探索和应用。 【教学难点】多边形定义的理解。多边形内角和公式的推导。转化的数学思维方法的渗透。 三、教学过程设计 本节课分成七个环节: 第一环节:创设现实情境,提出问题,引入新课。 第二环节:概念形成。 第三环节:实验探究。 第四环节:思维升华。 第五环节:能力拓展。 第六环节:课时小结。 第七环节:布置作业。 第一环节创设现实情境,提出问题,引入新课 1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。 2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角? 目的: 1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。 2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。 第二环节概念形成 1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。 2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。 目的: 1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。 2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。 第三环节实验探究 (以四人小组为单位展开探究活动) 提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究。 活动一:利用四边形探索四边形内角和 要求:先独立思考再小组合作交流完成) (师巡视,了解学生探索进程并适当点拨) (生思考后交流,把不同的方案在纸上完成) 八年级数学说课稿推荐6一、说教材 本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。 二、说教学目标 知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。 三、教学重点与难点 重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节: 一、回顾与思考电脑展示人字型屋顶的图像,提问: 1、屋顶设计成了何种几何图形? 2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形) 3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。 二、观察与表达 1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。 2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理: 定理1:等腰三角形两底角相等。 定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。 通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。 学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。 三、了解与探究 3、探索定理 一、(A组口答,B组独立解答) A组: 1、等腰直角三角形的两个锐角各等于几度? 2、若等腰三角形顶角为40度,则它的顶角为几度? 3、若等腰三角形底角为40度,则它的底角为几度? B组: 1、若等腰三角形一个内角为40度,则它的其余各角为几度? 2、若等腰三角形一个内角为120度,则它的其余各角为几度? 3、一个内角为60度,则它的其余各角为几度?(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。 二、根据性质2填空: (1)∵AB=AC,AD⊥BC, ∴ (2)∵AB=AC,BD=CD, ∴ (3)∵AB=AC,∠1=∠2, ∴ 为了对定理进行进一步探索,设计了以下练习:练习一的整体设计遵循低起点、小分阶、大容量、高密度的原则,其目的是要学生掌握应用等腰三角形性质定理1与三角形内角和定理求角的度数的规律,但教师不是直接将规律灌输给学生,而是让学生在练习过程中自己发现规律,使学生获得从问题中探索共同属性的思维能力。从认知结构看,利用三线合一性质来证明角相等、线段相等或垂直与学生原有认知结构联系较少,需要建构新的认知结构,是一种“顺应”过程,对学生来说有一定困难,因此设计了下面一组填空题,帮助学生进行建构活动。同时,提醒学生注意性质应用应以等腰三角形为前提,为例2的教学作了辅垫,起到分散难点的作用。 四、应用与提高应用举例: 如图,某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B,∠C,∠CAD的度数。 例1:求证等腰三角形两底角平分线相等AEDBC由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤: ①根据命题画出相应的图形,并标出字母 ②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。 ③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。 从已知出发: a:由AB=AC联想到什么 b:BD、CE是△ABC的角平分线联想到什么 c:由a、b联想到什么 d:由a、b、c联想到什么 e:由d联想到什么 从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。 “证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。 分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。 本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。四、应用与提高例2:已知:如图,△AOBDCO’ABC中,AB=AC,O是△ABC内一点,且OB=OC,AO的延长线交BC与D. 求证:BD=CD,AD⊥BC 思考:(1)本题的结论有何特 殊之处?——证明两个结论 (2)你准备如何得出这两个结论?——分别认证或同时证明 (3)哪一种简捷?利用什么性质? 在此基础上请学生按照例1的思考方法自己寻找解题思路,可以在小组间进行讨论。 变式拓展: (1)如图,在例2中若点O是△ABC外一点,AO连线交BC于D,如何求证? (2)若点O在BC上呢? 经过例1的学习,学生已有一定推理基础,因此应放手让学生自己去发现证题思路,从而学到新的研究数学学习的方法,并逐渐内化为自己的经验。同时也体现了自主探索、合作交流的学习方式。 在这里有意通过变式让学生经历图形变换过程,并使他们感受到在一定条件下,图形变换不会改变图形的实质,最后将点O移到BC上,使学生体验了从一般到特殊的过程。想一想:记一块等腰直角三角尺的底边中点为,再从顶点悬挂一个铅锤,把这块三角尺放在房梁上,如果悬线通过点M就能确定房梁是水平的,为什么?通过想一想进一步突出重点与难点,也有利于引导学生运用数学的思维方式去观察、分析现实生活,增强应用数学的意识。五、心得与体会 通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习-总结-学习-反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。六、作业(1)作业本上相应的作业。(2)已知:D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE(1)进一步巩固和提高所学知识(2)及时反馈、查漏补缺(3)体现层次性与开放性六、说评价 八年级数学说课稿推荐7一、说教材 1、教学内容 九年义务教育六年制小学数学教科书(西师版)四年级下册第40至43页的内容及相关练习题。 2、教材简析 “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生学习三角形的特征从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下基础。 3、教学目标 根据教材内容及学生的知识水平和心理年龄特点,制定了以下教学目标: (1)让学生通过学习活动,发现三角形和边的特征会给三角形的分类,理解并掌握各种三角形的特征。 (2)培养学生观察,操作和抽象概括能力。 (3)激发学生的主动参与意识,自己探索意识和创新精神。 4、教学重点、难点的确定 根据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能根据角的特点给三角形分类,因此这是教学重点。根据学生的认识水平和年龄特点,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃。因而,“能理解并掌握各种三角形的特征”是本课教学的难点。 5、教学准备 三角板、多媒体课件、学生用表格等 二、说教法、学法 根据新课标的要求和学生的实际,以直观教学为主,运用观察动手操作,小组讨论等多种方法,结合教材,让学生在“看一看”,“量一量”,“比一比”,“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力,语言表达能力和自学能力。在教学中,首先把握新旧知识的衔接点,利用教材6个三角形组成的图案,让学生说说自己对三角形的认识,引出课题“三角形的分类”。放手让学生动手操作,小组讨论交流,寻找三角形分类的方法,最后让学生说说自己归类的依据,归纳出各种三角形的特征,培养学生的抽象概括能力。 三、说教学过程 为了完成本课的教学目标,设计了以下的教学过程。 (一)创设情景,揭示课题 由学生对三角形的认识引入课题,即为学生接受新知识做好铺垫,也让学生明确学习内容直奔放主题。 (二)动手操作,探讨三角形分类方法 1、根据角的特点,对三角形进行分类。 新课标倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,分析解决问题的能力,以及交流与合作的能力,把学习变成人的主动性、能动性、独立性不断生成、张扬、发展、提升的过程。 我设计了如下环节: (1)学生先是独立思考、独立操作,独立探索分类。(事先给每个学生准备一个学袋:一张表格) ①学生根据表格对这个三角形进行观察,再填表。填完表格,再对表格中的数据进行观察,就能容易地进行分类。 ②把分类的结果填在表中。 小组交流 学生在小组内分别展示自己的劳动成果,说说自己的分类依据。 (3)展示学生代表作品,学生互评。 (4)师小结归纳(边把分类依据板书出来) (5)鼓励学生给自己分类的三角形取个名字。 让学生感受到自己就是学习的主人,体验劳动成果的喜悦心情,增强学习的信心。 (6)引导学生对三类的三角形进行比较,得出相同点:每个三角形至少有两个锐角。 (三)指导完成课堂活动及练习十一第1至3题。主要目的是巩固复习更好引领后进生掌握按角对三角形分类。 (四)全课总结 让学生学会自我评价,体现了新课标评价的多样性,还可以训练学生的语言发展能力。 (五)说板书设计 本课的板书意在突出重点,解决知识难点,有学生分类的作品展示,有教师板书的知识点。教学内容一目了然,也便于学生观察、比较。 (六)作业设计。 目的加强巩固,能更好的掌握本课知识点。 八年级数学说课稿推荐8一、说教材 1、教学内容:义务教育六年制小学数学第十册第一单元的第4课时。 2、教材分析: 随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将统计与概率安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。 3、教学重、难点: 平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的平均数又和过去学过的平均数的方法不同,弄清全部数据的总和与全部数据的个数之间的对应关系就是教学的难点。 4、教学目标 在学生计算出平均数的基础上应充分引导学生理解平均数概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为: 知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。 能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。 情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。 二、说教法: 求平均数作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以学生发展为本,以活动为主线,以创新为主旨,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。 三、说学法: 在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。 四、说教学过程: (一)创设情境,提出问题 老师从各组的假期作业调查报告学会理财中得知以下一些数据: 第一组11人,在春节共收到利是11000元, 第二组12人,在春节共收到利是9960元, 第三组10人,在春节共收到利是7990元。 从这组数据,你能提出什么数学问题? 学生提出如下问题: (1)第一组(第二组、第二组)平均每人在春节收到利是多少元? (2)平均每组在春节收到利是多少元? (3)平均每人在春节收到利是多少元? [这个过程其实就是数学化的过程,它对于培养学生用数学的眼光观察、思考问题有着实际的意义。由熟悉的生活情景引入,使学生体会到数学就在身边,生活中处处离不开数学,从而对数学知识产生亲切感,能更好地激发学生爱数学、学数学的兴趣。] (二)解决问题,思维冲突。 学生提出了他们感兴趣的问题,让他们逐解答: (1)1100011=1000(元) 996012=830(元) 799010=799(元) 学生的认识刚刚获得平衡,老师又用某一学生的解答引出冲突,第二个问题有以下三种不同的答案: (2)法1、(11000+9960+7990)3=9650(元) 法2、(1000+830+799)3=876(元) 法3、1000+830+799=2629(元) 谁的对呢? 学生悬念顿生,思维处于欲罢不能的愤悱状态,迫使他们自觉产生思维碰撞,多角度思考问题,鼓励学生充分发表意见,从而进一步理解平均数的意义和一般方法。 [学起于思,思源于疑。通过问题情境的创设,为探索活动提供了动力,明确了方向,使学生进入心求通而未得,口欲言而未能的境界,激发了他们的探究欲望。] (三)自主探究,合作交流 八年级数学说课稿推荐9一、说教材 (一)教材的地位和作用 《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》、《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。 (二)教学目标 基于以上对教材的分析以及对教学现状的思考,我从知识与技能、教学过程与方法、情感态度价值观三方面拟定了本节课的教学目标: 1、通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。 2、通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。 3、通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识、探索精神和实践能力。 (三)教学重、难点 因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。 二、说教法、学法 本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量、折一折、撕一撕、画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。 因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。 三、说教学过程 我以引入、猜测、证实、深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。 (一)引入 呈现情境:出示多个已学的平面图形,让学生认识什么是“内角”。(把图形中相邻两边的夹角称为内角)长方形有几个内角?(四个)它的内角有什么特点?(都是直角)这四个内角的和是多少?(360°)三角形有几个内角呢?从而引入课题。 设计意图:让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。 (二)猜测 提出问题:长方形内角和是360°,那么三角形内角和是多少呢? 设计意图:引导学生提出合理猜测:三角形的内角和是180°。 (三)验证 (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度? (2)撕拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角?请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。 (3)折拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。 (4)画:根据长方形的内角和来验证三角形内角和是180°。 一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。 设计意图:利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角、长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。 (四)深化 质疑:大小不同的三角形,它们的内角和会是一样吗? 观察:(指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。) 结论:角的两条边长了,但角的大小不变。因为角的大小与边的长短无关。 实验:教师先在黑板上固定小棒,然后用活动角与小棒组成一个三角形,教师手拿活动角的顶点处,往下压,形成一个新的三角形,活动角在变大,而另外两个角在变小。这样多次变化,活动角越来越大,而另外两个角越来越小。最后,当活动角的两条边与小棒重合时, 结论:活动角就是一个平角180°,另外两个角都是0°。 设计意图:小学生由于年龄小,容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用“角的大小与边的长短无关”的旧知识来理解说明。 对于利用精巧的小教具的演示,让学生通过观察、交流、想象,充分感受三角形三个角之间的联系和变化,感悟三角形内角和不变的原因。 八年级数学说课稿推荐10各位评委: 大家好! 今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。 一、说教材 1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。 2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。 二、说教学目标 根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为: 1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的'理解。 2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。 三、说教法 本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。 四、说学法 我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。 五、说教学过程 (一)创设情境,发现新知 首先提出问题 问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么? 【设计意图及教法说明】 在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。 问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V, (1)你能用含有R的代数式表示I吗? (2)利用写出的关系式完成下表。 R/Ω 20 40 60 80 100 I/A 当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么? 【设计意图及教法说明】 因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。 问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的? 【设计意图及教法说明】 学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。 问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? 【设计意图及教法说明】 问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。 (二)合作探究,获得新知 1.出示问题 想一想,你还能举出类似的例子吗? 【设计意图及教法说明】 这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。 2.启发学生建构新知 反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。 反比例函数自变量不能为0! 反比例函数的一般形式:y= k/x(k为常数,k≠0) 反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0) 【设计意图及教法说明】 这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。 (三)反馈练习,应用新知 根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。 1.基础过关 (1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少? ①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2 【设计意图及教法说明】 此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。 (2)做一做 ①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? ②某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? ③y是x的反比例函数,下表给出了x和y的一些值: a.写出这个反比例函数的表达式; b.根据函数表达式完成下表。 表略。 【设计意图及教法说明】 通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。 2.能力拓展 (1)你能举个反比例函数的实例吗?与同学进行交流。 (2)y=5xm是反比例函数,求m的值。 【设计意图及教法说明】 问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。 (四)归纳总结,反思提高 通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。 (如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?) 【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。 (五)推荐作业,分层落实 必做题:课本第134页习题1、2题。 选做题:已知y与2x成反比例,且当x=2时,y=-1,求: (1)y与x的函数关系式。 (2)当x=4时,y的值。 (3)当y=4时,x的值。 【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。 八年级数学说课稿推荐11一、教材分析 1、教材的地位和作用 《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。起着承前启后的作用。 2、教材的教学目标: ①知识与技能目标: 掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。 ②过程与方法目标: 通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。 ③情感与态度目标: 通过合作交流培养学生团结协作、乐于助人的品质。 3、教学重点与难点: 重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。难点:等腰三角形性质的推理证明。 二、学情分析 八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。 三、教法与手段 根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。另外,我还将采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。 四、学法设计 《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。结合这一理念在探究等腰三角形的性质时我将采用学生实验操作、小组合作、观察发现、师生互动、学生互动的学习方式。 五、教学过程设计 (一)创设情景、导入新课 ①复习提问:向同学们出示几张精美的建筑物图片,引入等腰三角形。 (设计意图:感知数学知识和实际生活联系紧密,培养观察力,感受身边处处有数学。) ②等腰三角形的相关概念: 1.定义:两条边相等的三角形叫做等腰三角形。 边:等腰三角形中,相等的两条边叫做腰,另一条边叫做底边。 角:等腰三角形中,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 ③设问:等腰三角形具有哪些特殊的性质呢?(引入新课) (二)实验探索、得出猜想: ①动动手:让同学们用剪刀在长方形纸片上剪下等腰三角形,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?“比一比”看谁思考的结论最多。 (设计意图:以六人小组为单位学生亲自操作实验,填写导学案。通过组内合作与交流,集思广益让学生用自己的语言在小组内表达自己的发现。) ②得出猜想:可让学生有充分的时间观察、思考、交流、可能得到的结论: (1)等腰三角形是轴对称图形 (2)∠B=∠C (3)BD=CD,AD为底边上的中线 (4)∠ADB=∠ADC=90°,AD为底边上的高线(5)∠BAD=∠CAD,AD为顶角平分线 (设计意图:以小组为单位派代表发言即组间交流补充,引导归纳提炼,使不同层次的学生都能感受新知,建立新的知识体系,为进一步探索做准备。) (三)证明猜想、形成定理: 1、结论(2)∠B=∠C你能用一个命题表达这一结论并论证它的正确性吗? (1)语言总结:等腰三角形的两底角相等。(简写成“等边对等角”) (2)怎样论证这个一命题的正确性呢? ①为证∠B=∠C,需要添加辅助线构造以∠B、∠C为元素的两个全等三角形。 ②探讨添加辅助线的方法,让学生选择一种辅助线并完成证明过程。 设计说明:以上过程分小组讨论,在探索过程中鼓励学生寻求不同(作高、中线、角平分线)的方法来解决问题。 利用展台展示各小组不同的证明方法,让学生的个性得到充分的展示。 (3)得出等腰三角形的性质1:等腰三角形的两底角相等。(简写成“等边对等角”) 2、结论(3)(4)(5)你也能用一个命题表达这一结论并论证它的正确性吗? (1)结合性质一的证明鼓励学生证明总结的命题 (2)得出等腰三角形的性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。 (3)“三线合一”的几何表达: 如图,在△ABC中,AB=AC,点D在BC上 ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(为了方便记忆可以说成“知一求二!”) ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD 2.设计意图:充分调动各组学生的积极性、主动性,采用各小组竞争的方式,参照性质1的探索完成本性质的探索与证明。通过本性质的探索让不同的学生有不同的收获,让每个学生的能力都得到提升。 (四)实例剖析、巩固新知: 1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度数 2、例2:在△ABC中,AB=AC,点D是BC的中点,∠B=30 (1)求∠ADC的度数 (2)求∠BAD的度数 此题的目的在于等腰三角形“等边对等角”和“三线合一”性质的综合运用,以及怎么书写解答题,强调“三线合一”的表达过程。 解:(1)∵AB=AC,D是BC边上的中点(已知) ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三线合一”) ∴∠ADC=∠ADB=90°(垂直的定义) (2)∵∠BAD+∠B+∠ADB=180°(三角形内角和等于180°) ∴∠BAD=180°-∠B-∠ADB =180°-30°-90°=60° (设计意图:设计例题1巩固等腰三角形“等边对等角的性质”的理解,让学生学以致用,获得成就感,增强学习数学的自信心。而例题2主要是体会等腰三角形“三线合一”性质的运用。这两个例题作为课本上的例题是基础新知的巩固,要求能正确的写出解题过程。) (五)课堂练习、总结所得: 1、先完成课后81页练习1、2、3、4题 (设计意图:作为课本上的练习题的完成达到检测学生对本节课知识的掌握情况,从而帮助学生查漏补缺,巩固基础知识。) 2、学以致用: (设计意图:让书生体会数学知识和实际生活的紧密联系) 如图,是西安半坡博物馆屋顶的截面图,已经知道它的两边AB和AC是相等的建筑工人师傅对这个建筑物做出了两个判断: ①工人师傅在测量了∠B为37°以后,并没有测量∠C,就说∠C的度数也是37°。 ②工人师傅要加固屋顶,他们通过测量找到了横梁BC的中点D,然后在AD两点之间钉上一根木桩,他们认为木桩是垂直横梁的。 请同学们想想,工人师傅的说法对吗?请说明理由。 设计意图:运用所学知识解决实际问题,引导学生将实际问题转化为数学问题,进一步加深学生对等腰三角形性质的理解和运用;从数学回到实际生活,自然地渗透数学作用于实际问题的思想。 3、课堂小结 今天我们学习了什么?你觉得在等腰三角形的学习中要注意哪些问题?设计意图:帮助学生回顾,归纳,巩固所学知识。 (六)作业布置、深化提高: 1、课本P84:习题13.31、2、3;(必做题) 2、(思维发散)选做题 已知:如图△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2 求证:∠ACE=∠BC 六、板书设计 八年级数学说课稿推荐12今天我说课的题目是梯形,这节课我主要从教材背景分析、教学目标设计、学情分析、教学手段及方法、教学程序设计、教学评价设计、板书设计等几方面来完成我的说课。 一、教材分析 (一)、教材的地位和作用 关于梯形,是人教版教材八年级下册第十九章第三节的内容。本课知识是对前面所学的平行四边形、矩形、三角形知识的发展、巩固和应用。梯形是中学阶段几何知识的重要内容。这节课主要是训练学生的证明思路,通过添加辅助线的方法对等腰梯形的性质进行证明和应用,通过本节课的学习,使学生学到数学转化的思想方法。同时培养学生分析问题、解决问题的能力。它对整章节教学起承上启下的作用。 (二)教学目标 根据教材分析,结合学生的实际情况,我拟定了以下的教学目标: 知识与技能目标 探索并掌握梯形的有关概念和基本性质,进一步掌握等腰梯形的性质定理,并能通过逻辑推理进行证明。 能运用梯形的有关概念概念和性质进行简单的计算和证明,进一步培养学生分析问题的能力。 体验添加铺助线对证明的必要性使学生初步掌握等腰梯形中常用辅助线的添加方法和应用。 2、过程与方法目标 ⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识; ⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略、 3、情感、态度与价值观目标 让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦; 二、教学重点、难点 (一)重点: 1、等腰梯形的性质 2、通过实际操作研究梯形的基本辅助线作法。 (二)难点:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。 富有趣味的符合学生认知规律的教学环节设置、现代化教学手段的使用、在课堂上师生双主体作用的充分发挥、多角度的教学评价设计,都将为明确体现本节课重点、突破难点服务、 三、教学方法 根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法。 兴趣是最好的老师,为了激发学生学习兴趣,使其发自内心的愿意和老师一起探究本节课的数学知识、方法,我采用了启发探究式的教学方法、在整个教学过程中,在老师的引领关注下,学生能够适时适量的进行自主探究,从而充分发挥教师的主导作用和学生的主体地位、在整体结构上力求突出观察、实验、归纳、类比、猜想、论证、小结等环节,这也正是数学发现的过程,并且把形象思维、直觉思维、逻辑思维的训练与培养结合起来。正如如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。 四、学习方法 初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的学习法、正如波利亚所说的:“学习任何知识的最佳途径,都是自己去发现”。在教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化。学会用类比的方法发现做辅助线的规律。采用启发、诱导的方法来指导学生“会学”,引导学生反思、小结的思想方法。指导学生“善学”,增强学习的乐趣和信心。 五、学情分析 学生在学习完平面图形的轴对称变换及平移、旋转后。初步掌握了通过图形的变化认识图形的性质。但对于现阶段的初中生思维来说学生的思维还依赖于具体形象、易模仿的特点,因此逻辑思维能力还需加强。 六、教具、学具准备 多媒体,常用画图、剪纸工具,矩形纸片,平行四边形纸片,横条纸。 七、教学程序设计 (一)课堂结构设计: 情境引发 活动探索、研究发现 深化建构 迁移应用 梯形 系统概括 布置作业、拓展思维 (二)教学过程设计 在前三个环节都是以剪纸为主线:俗语说:良好的开端是成功的一半所以在掌握梯形概念的基础上,下面我们主要研究等腰梯形的性质、让学生拿出一张事先准备好的矩形纸片,提出问题:你能用一剪刀剪出一个等腰梯形吗?通过探究学生将这样折叠,剪裁、学生在剪裁的过程中会发现:等腰梯形是轴对称图形;对称轴是等腰梯形上下底中点的连线;同时还会发现等腰梯形边、角对称性之间的一些数量关系、将猜想结论用文字语言表述,即得到命题1:等腰梯形同一底边上的两个角相等、通过对本章前两节的学习,学生对研究四边形性质的程序较为熟悉,知道从四边形的边、角、对角线、对称性这几方面入手、通过观察等腰梯形,猜想其对角线间的数量关系,学生会说相等,教师用几何画板进行验证,发现刚刚的猜想是正确的、将猜想结论用文字语言表述,即得到命题2:等腰梯形的两条对角线相等、 这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教” 在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。 由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程、并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。 设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:最好的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题、顺利的突破了本节课的难点 在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题: 1、平行四边形和梯形的区别和联系; 2、我看等腰梯形的特殊性; 3、解决梯形的常用方法。以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。 在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的 1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形: (1)等腰梯形 (2)直角梯形、(要求:所拼成的图形互不重叠且不留空隙) 2、发挥想象,以梯形为基础图案设计通钢三中第九届运动会的会徽 我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔、 八、四点说明 1、板书设计分为三个部分:(左)梯形定义和性质;(中)梯形五种辅助线的作法及图形;(右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。 2、时间的大体安排 情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。 3、教学反思需要课后填写 4、整个设计要突出体现的特色 让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教” 九、教学评价设计 本节课对学生的评价是多角度的,在教学过程中,从学生学习积极性、动手操作能力、语言表达能力、数学素养、克服困难的钻研精神等多方面对其学习过程和学习效果进行评价;课后通过作业练习将这种评价延续、教师要根据不同学生的不同程度发现闪光点,及时予以肯定,同时及时发现学生在学习探究过程中遇到的问题,给与指导和帮助,从而为保护学生的学习积极性、学生之间的互相评价也是激发学生学习潜能的有效手段、同伴间的互动可以使学生虚心求学、互相促进。 八年级数学说课稿推荐13内容提要:本节内容是人教版八年级下册第十九章第三节第一课时的的内容。梯形是中学阶段几何知识的重要内容,这节课主要是训练学生的证明思路,通过添加辅助线的方法对等腰梯形的性质进行证明和应用,通过本课的学习,使学生更好的领会数学转化的思想方法。同时培养学生分析问题、解决问题的能力。它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。 正文:今天我说课的题目是梯形,这节课我主要从教材背景分析、教学目标设计、学情分析、教学手段及方法、教学程序设计、教学评价设计、板书设计等几方面来完成我的说课。 一、教材分析 (一)。教材的地位和作用 关于梯形,是人教版教材八年级下册第十九章第三节的内容。本课知识是对前面所学的平行四边形、矩形、三角形知识的发展、巩固和应用。梯形是中学阶段几何知识的重要内容。这节课主要是训练学生的证明思路,通过添加辅助线的方法对等腰梯形的性质进行证明和应用,通过本节课的学习,使学生学到数学转化的思想方法。同时培养学生分析问题、解决问题的能力。它对整章节教学起承上启下的作用。 (二)教学目标 根据教材分析,结合学生的实际情况,我拟定了以下的教学目标: 知识与技能目标 探索并掌握梯形的有关概念和基本性质,进一步掌握等腰梯形的性质定理,并能通过逻辑推理进行证明。 能运用梯形的有关概念概念和性质进行简单的计算和证明,进一步培养学生分析问题的能力。 体验添加铺助线对证明的必要性使学生初步掌握等腰梯形中常用辅助线的添加方法和应用。 2。过程与方法目标 ⑴使学生在探究梯形相关的概念和等腰梯形的性质的过程中发展学生的说理意识; ⑵在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。 3。情感、态度与价值观目标 让学生们体会数学活动充满着思考与创造的乐趣,体验与同学合作交流的愉悦; 二、教学重点、难点 (一)重点: 1。等腰梯形的性质 2。通过实际操作研究梯形的基本辅助线作法。 (二)难点:灵活添加辅助线,把梯形转化成平行四边形或三角形。原因是解决梯形问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,对于刚刚接触梯形的学生难免会有无从下手的感觉,往往会有题目一讲就明白但自己不会分析解答的情况发生。 富有趣味的符合学生认知规律的教学环节设置、现代化教学手段的使用、在课堂上师生双主体作用的充分发挥、多角度的教学评价设计,都将为明确体现本节课重点、突破难点服务。 三、教学方法 根据《新课标》的要求,立足于学生的生活经验和已有的数学活动经验,本节课我采用“引、动、导、探”教学法。 兴趣是最好的老师,为了激发学生学习兴趣,使其发自内心的愿意和老师一起探究本节课的数学知识、方法,我采用了启发探究式的教学方法。在整个教学过程中,在老师的引领关注下,学生能够适时适量的进行自主探究,从而充分发挥教师的主导作用和学生的主体地位。在整体结构上力求突出观察、实验、归纳、类比、猜想、论证、小结等环节,这也正是数学发现的过程,并且把形象思维、直觉思维、逻辑思维的训练与培养结合起来。正如如陶行知先生所说的:在方法上应该是“行”为先,“知”为后。 四、学习方法 初二的学生已经基本具备了《新课标》中要求的“初步的空间观念”《新课标》指出:有效的数学学习活动不能单纯依赖模仿和记忆。为了充分体现《新课标》的要求,本节课采用“做、思、问、辩、议”的学习法。正如波利亚所说的:“学习任何知识的最佳途径,都是自己去发现”。在教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化。学会用类比的方法发现做辅助线的规律。采用启发、诱导的方法来指导学生“会学”,引导学生反思、小结的思想方法。指导学生“善学”,增强学习的乐趣和信心。 五、学情分析 学生在学习完平面图形的轴对称变换及平移、旋转后。初步掌握了通过图形的变化认识图形的性质。但对于现阶段的初中生思维来说学生的思维还依赖于具体形象、易模仿的特点,因此逻辑思维能力还需加强。 六、教具、学具准备 多媒体,常用画图、剪纸工具,矩形纸片,平行四边形纸片,横条纸。 七、教学程序设计 (一)课堂结构设计: 情境引发 活动探索。研究发现 深化建构 迁移应用 梯形 系统概括 布置作业。拓展思维 (二)教学过程设计 在前三个环节都是以剪纸为主线:俗语说:良好的开端是成功的一半所以在掌握梯形概念的基础上,下面我们主要研究等腰梯形的性质。让学生拿出一张事先准备好的矩形纸片,提出问题:你能用一剪刀剪出一个等腰梯形吗?通过探究学生将这样折叠,剪裁。学生在剪裁的过程中会发现:等腰梯形是轴对称图形;对称轴是等腰梯形上下底中点的连线;同时还会发现等腰梯形边、角对称性之间的一些数量关系。将猜想结论用文字语言表述,即得到命题1:等腰梯形同一底边上的两个角相等。通过对本章前两节的学习,学生对研究四边形性质的程序较为熟悉,知道从四边形的边、角、对角线、对称性这几方面入手。通过观察等腰梯形,猜想其对角线间的数量关系,学生会说相等,教师用几何画板进行验证,发现刚刚的猜想是正确的。将猜想结论用文字语言表述,即得到命题2:等腰梯形的两条对角线相等。 这样一环扣一环的完成教学目标,并解决本节课的两个重点。这样设计的目的是:如《新课标》中所说的“数学教学是数学活动的教学”所以在设计这节课时我没有一味的照本宣科,而是让学生们在操作中发现,在操作中探究,在操作中升华,借助于优美的课件使课堂真正成为学生的舞台,以自己的行动实践了一句话“教是为了不教” 在第四个环节迁移运用里本着“学以致用”的原则,在这里我设计了“练一练,议一议,试一试,想一想”四个环节。 由学生独立完成,用实物展台展示学生解答过程,集体评价、完善,规范学生的解题过程。并着重解决梯形的辅助线问题,由学生归纳、补充、完善,在黑板的主板面——中间位置逐一列出。 设计意图:解决梯形问题的策略很多,在这里我没有单纯的就辅助线来研究辅助线而是把知识点蕴含在习题中,再归纳总结。华应龙老师说:最好的课堂,本质上是一种“有助于启动和启发思维的酵母”。我就想通过这样做使学生的思维自然而然的过渡到本节课的难点上,这样设计培养了学生的发散思维,通过一题解决一类问题。顺利的突破了本节课的难点 在第五个环节系统概括里我没有采用传统的学生或老师小结的方式而是以探究课题的方式出现从下面三个题目中任选一个作为探究课题: 1、平行四边形和梯形的区别和联系; 2、我看等腰梯形的特殊性; 3、解决梯形的常用方法。 以小组为单位共同完成,将探究结果以文章的形式呈现。我这样设计的目的是这三个题目就是本节课的主要内容无论学生选择哪一个,在浏览、思考、准备、生成的过程中即达到了概括的目的又发展了学生的能力。 在第六个环节在作业内容的设计上,我改变了传统的以巩固知识为目的的单一的作业形式,留的两项作业都是考察学生能力的 1、拓展性作业:在平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形: (1)等腰梯形 (2)直角梯形。(要求:所拼成的图形互不重叠且不留空隙) 2、发挥想象,以梯形为基础图案设计通钢三中第九届运动会的会徽 我这样设计的目的是:即是学生乐于接受的又突出体现实践性、探究性、发展性,使学生所学知识得以升华,在设计会徽时还可以适当的对学生进行情感教育,同时为下节课的学习埋下伏笔。 八、四点说明 1、板书设计分为三个部分: (左)梯形定义和性质; (中)梯形五种辅助线的作法及图形; (右)大屏幕。这堂课的板书力求做到形象直观,适当运用彩粉笔,突出重难点,便于学生理解,起到深化主题,回顾中心的作用。 2、时间的大体安排 情境引发大约3分钟,活动探索、研究发现,大约15分钟,深化建构约8分钟,迁移运用大约13分钟,系统概括及布置作业6分钟。 3、教学反思需要课后填写 4、整个设计要突出体现的特色 让学生动手操作,让学生实践验证,让学生自己设计,学生能说的我不说,学生能做到的我不做,努力做到“教是因为需要教” 九、教学评价设计 本节课对学生的评价是多角度的,在教学过程中,从学生学习积极性、动手操作能力、语言表达能力、数学素养、克服困难的钻研精神等多方面对其学习过程和学习效果进行评价;课后通过作业练习将这种评价延续。教师要根据不同学生的不同程度发现闪光点,及时予以肯定,同时及时发现学生在学习探究过程中遇到的问题,给与指导和帮助,从而为保护学生的学习积极性。 学生之间的互相评价也是激发学生学习潜能的有效手段。同伴间的互动可以使学生虚心求学、互相促进。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。