网站首页  词典首页

请输入您要查询的范文:

 

标题 数轴教学设计
范文

数轴教学设计范文(通用10篇)

在教学工作者开展教学活动前,常常需要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么优秀的教学设计是什么样的呢?下面是小编整理的数轴教学设计范文,希望对大家有所帮助。

数轴教学设计 篇1

【教学重点与难点】

教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思 方法是本节课的教学难点。

【教学目标】

1、 理解数轴的概念,会画数轴;

2、 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

3、 通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

【教材处理】

本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

【教学方法】

通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

【教学过程】

一、问题解决 引入实例

(设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。)

问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?

学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C和点D分别表示槐树和电线杆的位置。

二、提出问题感受特征

问题2: 怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)

规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。由此可见,正数,0和负数可用一条直线上的点表示出来。

问题3:你还能举出生活中用直线上的点表示数的例子吗?

学生思考并讨论交流后可得出,例如:温度计、杆秤、门牌号码……

可以通过多媒体课件展示温度计(显示不同的度数),让学生体验读取温度,并比较各温度计上所显示 的温度的高低,使学生充分体验和认识温度计的设计特点,让学生再次体会数与形的对应关系。

(教学说明:根据学生的生活经验,学生在画图的过程中,能够认识到要描述马路上这三棵树、电线杆与车站的相对位置关系,既要考虑距离,又要考虑方向;但由于学生刚刚学习有理数中的正负数,对正负数意义的理解不是很深刻,因此他们可能想不到用正负来体现物体方向的相反,因此可以提出问题2加以引导,从而让学生认识到,我们可以用正数、0、负数,来描述直线上点的位置,反过来,正数、0、负数可以用直线上的点来表示,借助于这一情景,让学生非常自然的初步感受到数与形的结合。问题三的设计让学生再次体会数与形的对应关系,为数轴的引出做好充分的准备。)

三、适时命名 学生定义

1.引入数轴概念

(设计说明:由直观认识到理性认识,引导学生建立数轴概念)

通过上面的问题,我们知道正数,0和负数可用一条直线上的点表示出来。

一般地,在数学中人们用画图的方式把数"直观化"。通常用一条直线上的点表示数,这条直线叫做数轴。

2、揭示数轴内涵

(设计说明:让学生在动手操作中探索数轴的三要素)

四、提炼总结 规范定义

问题4:表示数的直线(数轴)须具备什么条件,才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?

可以先让学生试着画出自己想象的数轴,并把学生不同的画法展示出来,让学生先讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。(边总结边画图)

(1) 数轴是一条直线(习惯上将它画成水平,也可根据需要画成倾斜或竖直的)

(2) 数轴三要素

① 原点(可取直线上任一点作为原点,但一取定就不再改变。它表示数0,是正负数的分界点。)

② 正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)

③ 单位长度(选取适当的长度为单位长度,直线上从原点向右,再隔一个单位长度取一个点,依次表示1,2,3……,原点向左,用类似方法依次表示-1,-2,-3……;单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴。

五、定义辨析 练习巩固

(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对数轴认识,

形成初步技能。)

1、下列图形哪些是数轴,哪些不是,为什么?

2、(1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75;

(2)画一条数轴,并表示出如下各点:1000,5000,-2000;

(3)在数轴上标出到原点的举例小于3的整数;

(4)在数轴上标出-5和+5之间的所有整数。

(教学说明:练习1是基础性训练,主要是进一步巩固如何在数轴上表示有理数,并能说出数轴上表示有理数的点所表示的数;练习2有所加深,在巩固基本知识的同时,还要关注到画数轴时要根据已知数适当地选择单位长度和原点的位置,这对初学者来说有一定的难度,因此,在学生独立尝试的基础上,还可以让学生进行交流,互相学习,教师也可以适时地进行点拨。)

六、反思总结

(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。)

问题1:什么是数轴?

问题2:如何画数轴?

问题3:如何在数轴上表示有理数?

(教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

七、布置作业

1、 课本18页习题1.2第2题

2、指出下面数轴上A、B、C、D各点所表示的数

3、数轴上的点p与表示有理数3的点A的距离是2

(1)试确定点p表示的有理数;

(2)将点A向右移2个单位到点B,点B表示的有理数是多少?

(3)再把点B向左移动9个单位到点C,则点C表示的有理数是多少?

(教学说明:及时作业是巩固课堂学习知识的重要环节,由于课本提供练习较少,因此作适当的补充。同时也为下节课的学习作铺垫。)

数轴教学设计 篇2

一、教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

二、教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

三、课堂教学过程设计

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0.5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

教师根据学生回答给予肯定或否定,纠正后板书.

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.

学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答.

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.

例1画一条数轴,并画出表示下列各数的点:

1,5,0,-2。5,.

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

例2指出数轴上a、b、c、d、e各点分别表示什么数?

先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表.

数轴教学设计 篇3

一、教材分析

《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二、教学目标

知识技能:

①了解数轴的概念,学会如何画数轴;

②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

过程与方法:

①从直观认识到理性认识,从而建立数轴概念。

②通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。

情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

三、重难点

重点:

正确理解数轴的概念和有理数在数轴上的表示方法。

难点:

建立有理数与数轴上的点的对应关系(数与形的结合)。

四、教学教法

教法:启发式教学法和师生互动式教学模式。

学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

五、教学过程

(一)创设情景引入课题

1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

①零上5℃怎样表示?

②零下10℃怎样表示?

③0℃怎样表示?

2、画情境图,体会方向与距离

在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(二)得出定义揭示内涵

1、提问,到底什么是数轴?如何画数轴?

2、丰富数轴的内涵:分数和小数在数上怎么表示?

3、观察数轴上的有理数排列的大小?

4、数轴上表示—2的点在原点的()边,距离原点的距离是()。

表示3的点在原点的()边,距原点的距离是()。 小结

①位于数轴左(下)边的数总比右(上)边的数小。

②一般地,设a是一个正数,则数轴上表示数a在原点的()边,与原点的

距离是()个单位长度;表示数—a的点在原点的()边,与原点的距离是()个单位长度。

(三)手脑并用深入理解

1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

2、画数轴并表示出下列有理数,—2,2,0,

3、指出数轴上A、B、C、D、E点分别表示什么数?

(四)归纳总结强化思想

1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

(五)分层作业强化思想

1、教材第12页第

1、2题。

2、补充练习。

⑴画一条数轴,并表示出如下各点:±,±,±。

⑵画一条数轴,并表示出如下各点:1000,5000,—2000。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出—5和+5之间的所有整数。

3、思考练习

在数轴上能否实际画出表示一千分之一的点?这个点存在吗?

数轴教学设计 篇4

学习目标

1.知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;

2.了解数形结合的数学思想。

3.进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;

4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。

重点是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。

难点数轴上的`点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。

教学过程

一、自主学习(一)、自学课文(二)、导学练习

1.有理数包括哪些数?0是正数还是负数?

2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

3.思考:

①零上25℃用正数()表示。0℃用数()表示;零下10℃用负数()表示。

②什么叫数轴?数轴要具备哪三个要素?

③原点表示什么数?原点右方表示什么数?原点左方表示什么数?

④表示+2的点在什么位置?表示-3的点在什么位置?

⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数

4.数轴的画法,有哪几个步骤?

5.我们还可以更简便的得出数轴的定义:规定了 、 和 的直线叫做数轴。

、 和 是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

6.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数, 的数总比 的数大。

进一步观察数轴,发现所有的负数都在“0”的 ,所有的正数都在“0”的 ,这说明什么?

正数都 0;负数都 0;正数 一切负数。

(三)自学疑难摘要:

组长检查等级:

二合作探究

1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?

2.把下面各小题的数分别表示在三条数轴上:

(1)2,-1,0,,+3.5

(2)-5,0,+5,15,20;

(3)-1500,-500,0,500,1000。

想想看,第(3)小题数据比较大,那怎样表示呢?

3.把下列各组数用“<”号连接起来.

(1)–10,2,–14;

(2)–100,0,0.01;

(3),–4.75,3.75。

三、展示提升

1、每个同学自主完成二中的练习后先在小组内交流讨论。

2、每个组根据分配的任务把自己组的结论板书到黑板上准备展示。

3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

四、反馈与检测

1.判断下图中所画的数轴是否正确?

(1)

2.下面数轴上的点A、B、C、D、E分别表示什么数?

(2)

3.将-3、1.5、-6、2.25、-5、1各数用数轴上的点表示出来。

4.画一条数轴,并在上面标出下列的点。

±100±200±300

数轴教学设计 篇5

设计理念

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学重要思想方法。

教学目标

1、知识与技能

(1)掌握数轴的三要素,能正确画出数轴。

(2)能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

2、过程与方法

使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

3、情感态度与价值观

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

重点正确掌握数轴画法和用数轴上的点表示有理数。

难点有理数和数轴上的点的对应关系。

教学过程

1、创设情境。让学生根据家乡的地图尝试画出自己家相对沙墩中学的位置,让学生初步体会生活中的平面问题可以简化为具体的直线问题来研究。

2、让学生在一条直线上画出第一排八名同学的位置各个物体的相对位置,从而使学生对本节课的学习目的有一个初步的认识。若以第三名同学为中心,以他的左边为负,右边为正表示出其它同学

3、让学生仔细观察温度计,对比学生所画图形与温度计的区别,学生会发现,温度计上有0刻度,0刻度以上为正数,0刻度以下为负数, 那我们能否用类似温度计的图形来表示有理数呢?从而引出课题--数轴。

数轴教学设计 篇6

教学目的:

理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论根据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

分析:等量关系;A盘现有盐=B盘现有盐

检验所求出的解是否合理。培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参加了搬砖?

1.题目中有哪些已知量?

(1)参加搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2.求什么?初一同学有多少人参加搬砖?

3.等量关系是什么?

初一同学搬砖的块数十其他年级同学的搬砖数=1400

三、巩固练习

教科书第12页练习1、2、3

四、小结

列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

五、作业

数轴教学设计 篇7

教学目标

1、了解数轴的概念和数轴的画法,掌握数轴的三要素;

2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;

3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

二、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学重要思想方法,本课知识要点如下表:

定义三要素应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴原点

正方向

单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大

在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关知识点

1、数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学重要思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3。用数轴比较有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。

五、数轴定义的理解

数轴教学设计 篇8

教学目标

【知识与能力目标】

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

【过程与方法目标】

【情感态度价值观目标】

通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

【教学重点】

数轴的意义及作用。

【教学难点】

数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的用处是什么?

5、你会画数轴吗并应用它吗?

“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:

-1、5,0,-2,2,-10/3

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2

2、完成“自我检测”

3、个性补充

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-2000。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

数轴教学设计 篇9

一、学习目标:

1、什么是数轴?数轴上的点和有理数的对应关系?

2、你会用数轴上的点表示给定的有理数吗?会根据数轴上的点读出所表示的有理数吗?

二、学习重点:

会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

三、学习难点:

利用数轴比较有理数的大小

四、学习过程:

(一)自主学习课本,回答问题:

1、像这样规定了、和的直线叫做数轴

2、数轴与温度计作类比,真像一个平放的()()+3用数轴上位于原点()边()个单位的点表示,-4用数轴上位于原点()边()个单位的点表示,原点右边个单位的点表示(),原点左边1.5个单位的点表示().

(二)精讲点拨

1、完成例1

2、请画一条数轴表示下列有理数

+4,-1/2,1/2,-1.25,-4,0。

3、完成第10页第1、2题.

(三)、寻找规律,探究新知

1.观察以上数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?

2.在数轴上,表示4与-4的点到原点的距离各是多少?表示-1/2与1/2的点到原点的距离各是多少?由此你又有什么发现?

3.什么是绝对值?绝对值怎么表示?

(四)、巩固练习:

1.完成课本第11页练习1、2、3两题

2.在数轴上,表示数-3、2.6、+2、0、-1的点中,在原点左边的点有个。

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

3.与原点距离等于4的点有个?其表示的数是。

4.在数轴上,点A、B分别表示-5和2,则线段AB的长度是。

5.在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()

A.-5,B.-4C.-3D.-2

6.你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

五、谈谈你这堂课的学习体会

六、课后作业:

1、在数轴上表示-4的点位于原点的()边,与原点的距离是()个

单位长度。

2、在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是

3、数轴上与原点距离是5的点有()个,表示的数是()。

4、从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是(),再向右移动两个单位长度到达点C,则点C表示的数

是()。

5、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移

动5个单位长度,那么终点到原点的距离是()个单位长度

6、在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移

动5个单位长度,这时P点必须向()移动()个单位到达表

示-3的点

7.在数轴上表示-2的点离开原点的距离等于()

A、2B、-2C、±2D、4

8.请画一条数轴表示下列有理数

+3,-4,-3.5,-1.25,2,0。

数轴教学设计 篇10

教学目标

1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;

2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.

教学重点与难点

重点:数轴的概念和用数轴上的点表示有理数.

难点:同上.

教学设计

一.创设情境引入新知

观察屏幕上的温度计,读出温度。(3个温度分别是零上,零,零下)

问题1:

在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)

二.合作交流探究新知

通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)

小游戏:

在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答"到"游戏前可先不加任何条件,游戏中发现问题,进行弥补.

总结游戏,明确用直线表示有理数的要求,提出数轴的概念和要求(教科书第11页).

三.动手动脑学用新知

1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).

2.画一个数轴,观察原点左侧是什么数,原点右侧是什么数?每个数到原点的距离是多少?

四.反复演练掌握新知

教科书12练习.画出数轴并表示下列有理数:

1.5、-2.2、-2.5、 0。

2.写出数轴上点A、B、C、D、E所表示的数:

问题1先给出情境,学生观察,思考,研究,表示.增强学生的合作意识.

满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确.

游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么.

明确数轴的正确画法和要求.

练习中注意纠正学生数轴画法的错误和点的表示错误.

小结

1.数轴需要满足什么样的条件;

2.数轴的作用是什么?

作业

必做题:教科书第18页习题1.2:第2题.

备选题

1.在数轴上,表示数-3,2.6、0、-1的点中,在原点左边的点有个。

2.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是xx。

A、B、-4C、D。

3.(1)(请先在头脑中想象点的移动,尝试解决下面问题,然后再画图解答)一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?

(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?

总结可以由教师提出问题,学生总结,教师完善。

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2025/4/8 0:06:16