标题 | 函数奇偶性课件 |
范文 | 函数奇偶性课件 函数的奇偶性是指在关于原点的对称点的函数值相等。函数奇偶性课件内容,一起来看看! 课标分析 函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析. 教材分析 教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性. 教学目标 1 通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力. 教学重难点 1理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性. 2 在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的. 学生分析 这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,(k≠0),二次函数y=ax2,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 教学过程 一、探究导入 1 观察如下两图,思考并讨论以下问题: (1)这两个函数图像有什么共同特征? (2)相应的两个函数值对应表是如何体现这些特征的? 可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同. 对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数. 2观察函数f(x)=x和f(x)= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征. 可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数. 二、师生互动 由上面的分析讨论引导学生建立奇函数、偶函数的定义 1 奇、偶函数的定义 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数. 2 提出问题,组织学生讨论 (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数) (2)奇、偶函数的图像有什么特征? (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称) 三、难点突破 例题讲解 1 判断下列函数的奇偶性. 注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1〕. 2 已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式. 解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x), 而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x). (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0. 3 已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论. 解:先结合图像特征:偶函数的'图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下: 任取x1>x2>0,则-x1<-x2<0. ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2). ∴f(x)在(0,+∞)上是增函数. 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? 巩固创新 1 已知:函数f(x)是奇函数,在〔a,b〕上是增函数(b>a>0),问f(x)在〔-b,-a〕上的单调性如何. 2 f(x)=-x|x|的大致图像可能是( ) 3 函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4 设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式. 四、课后拓展 1 有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2 设f(x),g(x)分别是R上的奇函数,偶函数,试研究: (1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性. 3已知a∈R,f(x)=a- ,试确定a的值,使f(x)是奇函数. 4 一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 教学后记 这篇案例设计由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合职高学生的认知规律,有利于学生理解和掌握.应用深化的设计层层递进,深化了学生对奇、偶函数概念的理解和应用.拓展延伸为学生思维能力、创新能力的培养提供了平台。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。