网站首页  词典首页

请输入您要查询的范文:

 

标题 方程的意义评课
范文

方程的意义评课(精选11篇)

所谓评课,顾名思义,即评价课堂教学。是在听课活动结束之后的教学延伸。对其执教教师的课堂教学的得失,成败进行评议的一种活动,是加强教学常规管理,开展教育科研活动,深化课堂教学改革,促进学生发展,推进教师专业水平提高的重要手段。以下是小编帮大家整理的方程的意义评课(精选11篇),欢迎大家分享。

方程的意义评课 篇1

小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和—另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

在教学前,卢老师为了转变自己的教学思想,更新教学观念,深入了解新教材的涵意——方程是一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,使卢老师很顺利地就完成了本课的教学任务。

通过本节课的学习,发现学生很乐意用等式的性质来解方程,但同时让听课老师们感到了一些困惑:

1、从教材的编排上,整体难度下降,有意避开了,形如:45—X=23,56÷X=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,可以让他们尝试接受——解答X在后面这类方程的解答方法,就是等号两边同时加上X,再左右换位置,再两边减一个数,真有点麻烦了。而有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。

2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充形如X前面是除号或减号的方程还有X÷1。1=3这样的方程的解法。

总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,从新的理念、新的角度以及学生的角度去重新定位自己的教学模式。灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。

方程的意义评课 篇2

本节课是义务教育课程标准试验教科书五年级上册第一单元第一课时的内容。我被执教老师精心设计的教学设计和抛砖引玉的回答所震撼,不禁思考这样一个问题,为什么有的老师得不出自己预想的答案,用一个简单的比喻来说,要想上岸,你必须有一个码头。老师的引导是至关重要的。听完这节课,我深切的感受了一句话,“可能你的孩子没有给你出想象的答案,但是请你不要轻易的否定他”。那么下面浅谈一下自己听课之后的体会和感想。

第一、教学设计“循序渐进,环环相扣”,体现课改新思想

从整个教学过程的设计上来看,执教老师的课充分的体现了新课程改革的思想,教学目标体现三维目标的有机结合,他改变了书上传统的教法,从天平的平和与不平和引出等式,而是通过教师的引导,根据老师提供的天平教具,按照天平的平衡情况,写出相应的式子,然后再让学生根据写出的算式通过小组讨论合作探究,找到分类的标准。整个学习过程符合儿童的认知发展的一般规律,学生可以利用已有的知识和经验,想到用式子来辨识,引出等式中含有未知数,不含未知数的两种形式。通过引导学生观察,探寻式子的特点,再把这些式子进行两次分类,在分类中得出方程的意义和构成方程的两个条件,第一含有未知数,第二是等式。

第二、由浅入深,小组合作探究,了解方程的意义

执教老师在教学过程中,让学生体会到了方程是一种数学模型。通过让学生观察天平的相等关系,感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识由浅入深,逐步深入。并在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生通过小组合作交流的形式把写出的式子进行分类。讨论分类的标准,然后操作交流分类的结果。经过探索和交流,进一步的认识方程的特征,归纳出方程的意义。

第三、练习设计灵活多样,重细节

数学家华罗庚先生曾经说过“学数学而不练,犹如如宝库而空返”,而如今在增效减负的要求在,练习的设计更应该符合学生的认知,由简到难,做到灵活多样,这位老师就是遵循了这样的原则,从找一找那些是方程作为切入口,让学生通过自己的观察,探索,交流发现新的知识,所有的方程都是等式,但不是所有的等式都是方程。接下来根据学生的回答,提醒学生注意,列方程的

时,我们一般不把未知数单独放在等式的一边,这位老师充分的利用了课堂的再生资源,引出思考,未知数的只能是一个吗?一个式子中同时出现几个行不行?从而让学生自己总结出未知数的个数是不限的。我们都知道“数学来源于生活,用于生活”,结合具体的情景,让学生根据数量关系写方程,充分的体现了这一点,让学生在自然的情景中学习,获得知识。以引导为主,从学生的答案中提出疑问,解决问题,进一步理解方程的意义。

第四、我的几点建议

在揭示了方程的意义后,在找一找那些式子是方程之后,如果让学生根据自己对方程的理解,“写出几个自己心目中的方程”,并且分析、评判每一个方程的合理性,这样会不会更好一些,因为不仅可以检验学生对方程概念的理解,更为学生提供了一个开放的思考空间。此外,学生不仅展示了学习的结果,感知了方程的多样性。同时在对自己所列方程的一一判断中。加深了对方程意义本质的理解。

成功的教学离不开精彩的细节。执教老师的不论是对课题的导入、学生学习兴趣的激发、课堂提问的设计,还是对学生的回答因势利导作出鼓励性的评价和点拨,都体现了教师善于关注课堂细节,使课堂教学焕发出更大的生命活力。教学环节环环相扣,过渡自然流畅,体现新课程的合作与分享的教学方式。

方程的意义评课 篇3

《方程的意义》这一课的教学。难点是区分“等式”和“方程”,建立方程的数模模型在脑中。

事先我曾经试教用天平来为学生建立等式模型,效果比较好,后进生也能理解方程的意义,但是会出现使用方程的过程中,经常会产生误差,学生就经常误解方程是不相等的。

为了解决这一误解我就尝试着用跷跷板做游戏来让他们感受同等的等量关系,用文字来陈述第三种情境,让他们感受到大于、小于、等于关系。学生的兴趣此时如我所料确实比较高,可是我忽视了后进生,用这三种情境太过于抽象,让基础薄弱的学生不一定能立马反应过来。经过万主任的点拨,我好好的思考后我觉得应该给他们把天平和跷跷板同时呈现,用形象的图片呈现三种情境,他们的数模才会更容易建立。

第二环节的巩固新知识时候,我让学生小组讨论被墨汁挡住的.式子是否是方程时候,我回头想想我有点操之过急,我应该让他们先从基础的辨析后再来做这题,然后渗透集合思想让他们区分方程,这样这题的回答可能会更加的出彩。

第三个知识深入时候,看图列式我也应该更加明确告知学生式子的要求。也就是因为前面的起点太高,所以一些后进生把题意理解错误,使答题不够准确。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,调动了学生的学习热情,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我应该注意后进生,尽量多多从基础出发,注意帮助学生建立数学模型,更要把数学思想时刻灌输的课堂中。

方程的意义评课 篇4

《方程的意义》是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。《方程的'意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结合这节课,谈谈我在教学中的做法和看法。

一、复习导入,激趣揭题

该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。

二、实践操作,建立方程模型

1、用天平创设情境直观形象,有助学生理解式子的意思

等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

2、自主操作,提高能力,激发兴趣

在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。

3、对方程的认识从表面趋向本质

(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。

(2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。

4、在“看”“说”和“写”中体会式子

当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。

三、实际运用,升华提高

在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。

本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会,加强学生对方程的兴趣,促进学生把生活和数学有机结合。

方程的意义评课 篇5

回顾我的教学,我认为有如下几个特点。

一、设置情景引导,促进学生的自主学习

在执教,《方程的意义》一课时通过天平的演示:认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,但要注意对学困生的引导,在这个方面应该给学困生更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。

二、合作交流,总结概括

通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅X可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。

三、回归生活,体会方程

在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生已有的解决数学问题的算术法解题思路对列方程会造成一定的干扰。对于利用天平解决实际问题较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言、用关系时表示时可能存在困难,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

方程的意义评课 篇6

这一次学校开展了活动,在活动中我们集体备课选定了《方程的意义》一课作为研讨课。这课的难点是区分“等式”和“方程”,为能突破这一难点我们精心设计了这节课的教学过程。

新课前先是出示了口算卡:

接着在方程意义教学过程中为了使学生能明白什么是相等关系,我们先用了一把1米长粗细均匀的直尺横放在手指上,通过这一简单的小游戏使学生明白什么是平衡和不平衡,平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。

虽然整个教学任务好象是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清,例好在练习题中有一道讨论题:“方程都是等式,而等式不一定是方程。”这句话对吗?(答案是对的)但是通过小组同学的合作学习和争论,答案不一。虽然做错的同学最后被做对的同学说服了,但这也说明了“等式”和“方程”的教学过程中还存在问题。其实我们是忽视了“等式”和“方程”的直接对比

我们的口算题引入本来是为这节课的学习进行铺垫,但在第一次上课时,口算题我们做完后没有再回过头来再充分利用。课后经过大家的评课和科培中心老帅的指点,看起来是很简单的几道口算题,其中隐藏着等式和方程的关系。第二节课中我们通过改进,在讲完“等式”和“方程”后又回到口算卡,将口算卡的题通过变化——只是等式,——既是等式又是方程,这样进行对比使学生对“等式”和“方程”的关系就弄得明明白白了。

方程的意义评课 篇7

《方程的意义》这一课的教学。难点是区分“等式”和“方程”,为突破这一难点我这样设计了这节课的教学过程。

新课前进行三分钟口算。上课开始进行简单的小游戏:把粗细均匀的直尺横放在手指上,使直尺平衡。通过这一简单的小游戏使学生明白什么是平衡和不平衡,以此使学生能明白在方程意义教学过程中什么是相等关系,天平中的平衡的情况是当左右两边的重量相等时(食指位天直尺中央),紧接着引入了天平的演示,在天平的左右两边分边放置20+30的两只正方体、50的砝码,并根据平衡关系列出了一个等式,20+30=50;接着把其中一个30只转换了一个方向,但是30的标记是一个“?”天平仍是平衡状态。得出另一个等式20+?=50,标有?的再转换一个方向后上面标的是x,天平仍保持平衡状态,由此又可以写出一个等式20+x=50。整个过程注重引导学生通过演示、观察、思考、比较、概括等一系列活动,由浅入深,分层推进,逐步得出“等式”——“含有未知数的等式”——“方程”。虽然整个教学任务是完成了。但从学生的练习中我们发现还有一部分学生对“等式”和“方程”的关系还是没有真正弄清。

本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。

教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出数量关系式,用含有x的等式表示数量变化情况等。

总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我们还要注意将“等式”和“方程”进行直接对比。以使学生理解和区分“等式”和“方程”。口算题引入铺垫后,要再回过头来充分利用。在讲完“等式”和“方程”后再回到口算题上,将口算题通过变化由等式到既是等式又是方程,这样进行对比使学生弄明白“等式”和“方程”的关系。

方程的意义评课 篇8

《方程的意义》是一节数学概念课,概念教学是一种理论教学,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性。

一、生活引入,注重体验。

数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。

《方程的意义》这节课与学生的生活有密切联系,因此在课始,采用学生生活中常见的跷跷板游戏,让学生感受到类似于天平的“相等”和“不等”。这样在结合天平感受这种关系以及最终体会到方程中“相等”的关系时,学生就会感受水到渠成。

二、自主学习,辨析完善。

因为五年级学生已经进入了高年级,是有一定的学习能力的。所以,认识方程中,我选择了放手让学生进行自学。并给出了一定的自学提纲:

(1)是方程,我的例子还有。

(2)不是方程(可以举例)。

(3)我还知道。这里学生自学时是带着自己例子进行思辨性的自学,所以感觉学生理解的还是比较的透彻的,在交流哪些不是方程时,学生理解了等式、不等式、方程之间的关系:方程一定是等式,等式不一定是方程,不等式一定不是方程等等。

三、结合实际、理解关系。

根据数量之间的关系列出方程也是本节课的重点之一。同时,这点也是后续列方程解决实际问题的一个基础。所以在出示实际问题列出方程时,我总是追问:你是怎么想的?让学生感受到搞清数量之间的关系是正确列出方程的前提条件。

另外,在练习的设计上,增加一些思维的难度和挑战也是锻炼学生数学思维的一个常态化的工作。

当然这节课还存在一些问题,比如对等式的突出得不够,学生“说”的训练不够,应该给学生更多的表述的机会。

方程的意义评课 篇9

作为开学第一课,课本就将方程这样一种重要的数学思想方法凸显出来,可见方程的地位之大,的确,方程对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。方程是一种特殊的等式,而等式的原型便是天平,可惜没找到实物,但不妨碍学生通过已有经验来自我构建。

首先出示5个式子,让学生根据自己的标准分成两类:等式与不等式,用“=”连接的便是等式,用其他如“﹥﹤≠≈”等不等号连接的式子是不等式。然后指出不等式需要到初中学习,今天我们研究等式。观察这几个等式,可以分为几类?指出,已经知道的数叫已知数,不知道的叫未知数,等式里有未知数,便是方程,方程包括在等式里,是一种特殊的等式。这样,算是新课内容结束了。接着根据关系式列方程。

从认知规律来看,本节课的设计完全符合标准,正本反馈,还是有些问题的。

一、学生生活经验不足,导致找不准数量关系。

妈妈买一台电话机,单价116元,付出x元,找回84元。学生的答案让你意象不到,什么形式都有,他们会将这三个数通过一定的符号随意地组合起来,让我哭笑不得。在此之前有一个文具盒与笔记本共20元的问题,还引导学生编成了应用题加以理解,不想还是有问题。所以学校应该斥资建立一个超市,让学生在真实的生活情境中找到发展的可能,有些数学问题真的只是生活,根本就不是数学。

二、加强备课力度,任何小的问题都不能存在。

还是上面一道题,根据以往列算式的经验,很多学生列成116+84=x,这是可以理解的,正因为我只是在课堂上强调:根据经验,未知数不单独放一边,这样跟算式的区别不大,但效果不很好。我想,将三种式子都板书出来,116+84=x,x-116=84,x-84=116,然后指出我们列方程习惯上不采用第一种,因为将x去掉,不影响答案,而选择二、三两种中的一种,

方程的意义评课 篇10

本节课从两个学生比较熟悉的实际问题入手,通过对所列方程的观察,并与一元一次方程类比,自然导出一元二次方程的意义及其相关的一些概念,既渗透了类比的数学思想,又加强了新旧知识间的联系,有助于学生对新知识的理解与接受,降低了知识点的难度,减轻了学生的学习负担。

计过程中,不过于强调形式化的定义,也不要求学生死记硬背,只要能辨认一些概念即可,最后出示的一个实际问题,目的让学生进一步体会一元二次方程学习的重要性及实际价值,同时也为下一节一元二次方程的解法及应用的学习设置悬念、埋下伏笔,激发学生的求知欲望,培养学生自主探究的习惯与能力。

本节课教学,注重知识与实际的联系,让学生认识到学习数学的重要性,注重学生的个性发展,采取自主探究与合作交流的学习方法,让学生经历思考、讨论、合作、交流的过程,使学生始终处于学习的主体地位,培养学生与人交流、与人合作的能力。从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感、态度与价值观等多方面得到发展。

分层作业中必做题巩固本节课的基本要求,体现了“人人都能获得必要的数学”;选做题密切联系生活,体现“人人学有价值的数学;不同的人在数学上得到不同的发展”,创设了具有实践性、开放性的问题情境,启发学生思考现实生活中可能蕴涵某些数学知识的现象,初步学会“用数学”的意识。通过训练,在日常生活中,学生就会用数学的眼光观察、探究现实世界,发现问题,通过自己的思考解决问题。

方程的意义评课 篇11

教学《方程的意义》,我反复研读了这节课的内容,并与旧教材的进行了对比,思考着新教材为什么这样设计?

旧教材先利用天平认识等式,然后认识方程。而新教材通过情境,先让学生提出问题,学生在解决问题的过程中,学到用含有字母的式子表示数量之间的关系,在此基础上,利用天平理解等式的意义,最后揭示方程的意义。

在设计这节课时,我把方程的意义作为教学重点,不仅让学生了解方程的概念,还要会判断哪些是方程。更多思考的是学生对方程的后继学习与思考,注重知识的渗透。如后面学习的等式的性质、用方程解应用题等等。

课堂上我让学生根据创设的情境,提出数学问题,学生几乎提不出表示两者之间关系的问题,都是些求未知数的问题。这时教师就直接出示要求的问题,然后让学生先找等量关系式,我发现只有极少数孩子能找到等量关系。由于找等量关系式教材中第一次出现,学生不知道从哪入手。学生思考讨论了一段时间,我发现也没有结果,我就引导着学生进行分析信息,找到了等量关系。找到了等量关系式,再列含有字母的式子就简单多了。课下我分析,主要是我在备课时,高估了学生,如何引导还需要多研究。这也是我下一步训练的重点。

为了让学生弄清楚方程与等式的关系,我通过天平的演示,让学生理解等式的意义,学生很容易根据天平列出算式。然后教师指出,我们刚才列出的这些式子都叫等式,在这些等式中,你们又发现了什么?学生很容易得出两种等式:一是不含未知数的等式,一种是含有未知数的等式,在此基础上,让学生比较得出方程的概念,然后通过练习判断哪是方程,那些不是方程?最后,让学生用画图的形式表示出等式与方程的关系,教材中没有出现这个内容,但我补充进去了,我觉得这样有助于学生加深对方程意义的理解。本节课从课堂整体来看,大部分学生思维比较清晰,会表述,但也有部分学生表述不清,发言不够积极。看来,课堂教学还要激活学生的思维,调动起学生的积极性,作为教师,还要多想些办法。

“自主合作探究”一直是我们所倡导的学习方式,但如何有效地实施?我认为,“自主学习”必须在教师的科学指导下,通过创造性的学习,才能实现自主发展。“合作探究”必须在学生独立思考的基础上进行,否则,学生则没有自己的主见,交流则会流于形式,没有深度。有了学生的独立思考,当学生展示交流时,不同的思路与方法就会发生碰撞,教师要尊重学生探求的结果,引导学生对自己的结果与方法进行反思与改进,促使全体参与,加生对知识形成过程的理解,培养梳理概括知识的的能力。

在整个教学过程中,教师作为主导者,要启发诱导学生发现知识,充分发挥学生的潜能,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 12:03:02