标题 | 高中数学说课稿 |
范文 | 高中数学说课稿(15篇) 在教学工作者实际的教学活动中,很有必要精心设计一份说课稿,通过说课稿可以很好地改正讲课缺点。那要怎么写好说课稿呢?以下是小编为大家收集的高中数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。 高中数学说课稿1一、教材分析: 集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 二、目标分析: 教学重点、难点 重点:集合的含义与表示方法。 难点:表示法的恰当选择。 教学目标 l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性。互异性。无序性; (4)会用集合语言表示有关数学对象; 2. 过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。 (2)让学生归纳整理本节所学知识。 3. 情感、态度与价值观 使学生感受到学习集合的必要性,增强学习的积极性。 三、教法分析 1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。 2. 教学手段:在教学中使用投影仪来辅助教学。 四、过程分析 (一)创设情景,揭示课题 1、教师首先提出问题: (1)介绍自己的家庭、原来就读的学校、现在的班级。 (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征? 引导学生互相交流。 与此同时,教师对学生的活动给予评价。 2.活动: (1)列举生活中的集合的例子; (2)分析、概括各实例的共同特征 由此引出这节要学的内容。 设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫 (二)研探新知,建构概念 1.教师利用多媒体设备向学生投影出下面7个实例: (1)1-20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形; (5)海南省在20xx年9月之前建成的所有立交桥; (6)到一个角的两边距离相等的所有的点; (7)国兴中学20xx年9月入学的高一学生的全体。 2.教师组织学生分组讨论:这7个实例的共同特征是什么? 3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。 一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。 4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。 设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神 (三)质疑答辩,发展思维 1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。 2.教师组织引导学生思考以下问题: 判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流。 让学生充分发表自己的建解。 3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。 4.教师提出问题,让学生思考 (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。 如果是集合A的元素,就说属于集合A,记作。 如果不是集合A的元素,就说不属于集合A,记作。 (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。 (3)让学生完成教材第6页练习第1题。 5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。 6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题: (1)要表示一个集合共有几种方式? (2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么? (3)如何根据问题选择适当的集合表示法? 使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。 设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。 (四)巩固深化,反馈矫正 教师投影学习: (1)用自然语言描述集合{1,3,5,7,9}; (2)用例举法表示集合 (3)试选择适当的方法表示下列集合:教材第6页练习第2题。 设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业 小结:在师生互动中,让学生了解或体会下例问题: 1.本节课我们学习了哪些知识内容? 2.你认为学习集合有什么意义? 3.选择集合的表示法时应注意些什么? 设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。 作业: 1.课后书面作业:第13页习题1.1A组第4题。 2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。 高中数学说课稿2尊敬的各位专家,评委: 上午好! 根据新课改的理论标准,我将从教材分析,学情分析,教学目标分析,学法、教法分析,教学过程分析,以及板书设计这六个方面来谈谈我对教材的理解和教学的设计。 一、教材分析 地位和作用: 《______________________》是北师大版高中数学必修二的第______章“__________”的第________节内容。 本节是在学习了________________________________________之后编排的。通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。 二、学情分析 1、学生已熟悉掌握______ 2、学生的认知规律,是由整体到局部,具体到抽象发展的。 3、学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力 4、学生层次参差不齐,个体差异还比较明显 三、教学目标分析 根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标: 1、知识与技能: 2、过程与方法:通过___学习,体会__的思想,培养学生提出问题,分析问题,解决问题的能力,提高交流表达能力,提高独立获取知识的能力。 3、情感态度与价值观:培养把握空间图形的能力,欣赏空间图形所反应的数学美(认识数学内容之间的内在联系,加强数形结合的思想,形成正确的数学观)。 教学重点: 难点: 四、学法、教法分析 (一)学法 首先,通过自学探究,培养学生的分析、归纳能力,提高学生合作学习的能力,学生课堂中体现自我,学会寻找问题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开。 其次,教学过程中,我想适时地根据学生的“最近发展区”搭建平台,充分发挥“教师的主导作用和学生的主体地位相统一的教学规律”, 从学生原有的知识和能力出发,指导学生学会观察、分析、归纳问题的能力。 学生只有不断地解决问题、产生成就感的过程中,才能真正地提高学习的兴趣,也只有这样才能“学”有新“思”,“思”有新“得”。 (二)教法 数学教育家波利亚曾经说过:“学习任何知识的最佳途径即是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的发展规律、性质和联系。”根据学生的认知特点和知识水平,为落实重点、突破难点,本着以人为本,以学为中心的思想,本节课我将采用启发式、合作探究的方式来进行教学。运用多媒体演示辅助教学的一种手段,以激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现问题、分析问题和解决问题。 五、教学过程分析 1、创设情境,引入问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。 2、发现问题,探究新知。 数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历 “数学化”、“再创造”的活动过程. 3、深入探究,加深理解。 有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究. 4、当堂训练,巩固提高。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。 5、小结归纳,拓展深化。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。 6、作业设计 作业分为必做题和选做题。 针对学生能力和水平的差异,进行分层训练,在所有学生获得共同知识基础和基本能力的同时,让学有余力的学生将学习从课堂延伸到课外,获得更大的能力提升,这体现新课改理念,也是因材施教的教学原则的具体运用。 现代数学教学观和新课改要求教学能从“让学生学会”向“让学生会学”转变,使数学教学真正成为数学活动的教学。所以,本节课我们不仅仅是单纯的传授知识,而更应该重视对数学方法的渗透。从熟悉的知识出发,学生自主探索、合作交流激发学生的学习兴趣,突破难点,培养学生发现问题、解决问题的能力 六、板书设计 板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;突出本节重难点,能指导教师的教学进程、引导学生探索知识,启迪学生思维。 我的说课到此结束,敬请各位专家、评委批评指正。 谢谢! 高中数学说课稿3一、教材分析: "数列"是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。 就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节课在教材中起到了"承上启下"的作用,必须讲清、讲透。 二、教学目标: 根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。 1、知识目标: (1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。 (2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。 2、能力目标: 培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。 3、情感目标: 通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。 三、重点、难点: 1、教学重点 理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。 2、教学难点 根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。 四、教法学法 本节课以"问题情境——归纳抽象——巩固训练"的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。 现代教学观明确指出:教师是主导,学生是主体,学生应成为学习的主人。根据本节内容及学生的认知规律,针对不同内容应选择不同的方法。对于国际象棋棋盘麦粒采用电脑动画演示,增强感性认识;所举的引例及数列的函数定义,可采用探索发现法;对通项公式及数列的分类等概念采用指导阅读法;对于难题(根据数列的前几项写出一个通项公式)采用讲练结合法。 "授人以鱼,不如授人以渔",平时在教学中教师应不断指导学生学会学习。本节课从学生实际出发,创设情境,引导学生观察、分析,探索发现,归纳总结,培养学生积极思维的品质,加强主动学习的能力。 为了有效地突出重点,突破难点,增大课堂容量,提高课堂效率,本节课将常规教学手段与现代教学手段相结合,将引例、例题、练习等实物投影。 五、教学过程 1、创设情景,激发兴趣,引入新课 (1)电脑动画演示:国际象棋棋盘格子中放有麦粒的示意图,从而得到一组数:1,2,22,23……263 叙述故事:给你一张报纸,你可以用它登上月球,你相信吗?只要不断地将报纸对折42次以后,报纸的厚度就可以达到月球和地球的距离。 设计意图:以实例引入概念,再配以电脑动画,叙述小故事,增强了感性认识,调动学生学习新知识的积极性。 (2)投影演示,再观察以下几列数: ①某班学生的学号:1,2,3,4……,50 ②从1984年到2004年,中国体育健儿参加奥运会每届所得的金牌数: 15,5,16,16,28,32 ③某次活动,在1km长的路段,从起点开始,每隔10m放置一个垃圾筒,由近及远各筒与起点的距离排成一列数:0.10.20.30,……1000 ④放射性物质衰变,设原质量为1,则各年的剩留量依次为:1,0.84,0.842,0.843,…… 2、归纳抽象,形成概念 (1)学生尝试叙述数列的定义:启发学生观察上述几组数据后,进行归纳总结定义:按一定次序排成的一列数,叫数列,便于培养学生的抽象概括能力。 举例1:1,3,5,7与7,5,3,1 这两个数列有何区别? 举例2:-1,1,-1,1,……是不是一个数列? 设计意图:使学生注意把数列中的数和集合中的元素区分开来: ①数列中的数是有顺序的,而集合中的元素是无序的。 ②数列中的数可以重复出现,而集中的元素不能重复出现。 进一步加深学生对数列定义的理解。 (2)数列的项及项的表示方法: an (3)数列的表示方法:可写成:a1,a2,a3,……,an…… 或简记为:{an},注意an与{an}的区别 上述(2)(3)采用指导阅读法(书P106页第7节~第8节第一句话),对an与{an}的区别进行集体讨论归纳。 3、通项公式的探索 (1)观察归纳定义 由学生观察引例中数列的项与它在数列中的位置(即项的序号)间的关系: 实物投影: 序号 1 2 3 …… 64 ↓ ↓ ↓ ↓ 项 1= 21-1 2=22-1 22 = 23-1 …… 263 从而可看出项与项的序号之间可用一个公式:an =2n-1表示,该公式叫数列的通项公式,然后归纳抽象出数列的通项公式的定义(略)。 (2)用函数观点看待数列:这是一个难点,讲解必须清楚、透彻。数列可看作是以自然数集或它的有限子集为定义域的函数,当自变量由小到大依次取值时对应的一列函数值(这是数列的本质),其图象是一群孤立的点,画图(棋盘麦粒这个数列) 设计意图:加深对函数概念的理解。 (3)数列的分类,并口答引例及数列①②③④分别归于哪类数列。 4、讲解例题 设计例题:①根据通项公式写出前几项并会判断某个数是否为该数列中的项;②根据数列的前几项写出一个通项公式。 例1,根据下列数列{an}的通项公式,写出它的前5项 (1) an= n/(n+1) (2)an=(-1)n · n 设计意图:使学生正确掌握通项与序号的关系。 变式训练:问 2589/2590是否为数列(1)中的项 设计意图:使学生明确方程思想是解决数列问题的重要方法。 例2,写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1)1,3,5,7 (2)2, -2,2 ,-2 (3)1 ,11 ,111 , 设计意图:引导学生进行解题后反思,对完善学生的认知结构是十分必要。写通项公式时,就是要去发现an与n的关系,对各项进行多角度、多层次观察,找出这些项与相应的项数(即序号)之间的对应关系。(注:遇到分数,可分别观察分子组的数列特征与分母组成的数列特征;若为正负相间的项,则可用-1的奇次幂或偶次幂进行符号交换,有时也可根据相邻的项,适当调整有关的表达式。) 5、练习巩固 投影演示: (1)写出数列1,-1,1,-1,……的一个通项公式 (2)是否所有数列都有通项公式? 上述(1)的设计意图:an=(-1)n+1也可写成 (分段函数的形式)(当n为奇数时,n为偶数时),说明根据数列的前几项写出的通项公式可能不唯一。(2):引例②就没有通项公式。通过这些练习,使学生能及时消化,及时巩固所学内容。 6、归纳小结 由学生试着总结本节课所学内容,老师适当补充,可以训练学生的收敛思维,有助于完善学生的思维结构。 (1) 数列及有关概念。 (2) 根据数列的通项公式求任意一项,并能判断某数是否为该数列中的项。 (3) 根据数列的前几项写出数列的一个通项公式。 (4) 数列与函数的关系 7、课后作业: (1)课本P110/习题3.1/1(3)(4)(5);2、书P108/4(1)(3)(4) (2)复习看书P106-107 六、评价与分析 本节课,教师可通过创设情景,适时引导的方式来激发学生积极思考的欲望,有时直接讲解,有时组织掌握学生集体讨论、探索发现,课堂上除反复强调注意点外,还应通过课堂练习和课后作业来强化它们。 通过本节课的学习,学生不仅掌握了数列及有关概念,而且可体会到数学概念形成过程中蕴含的基本数学思想:"函数思想、数形结合思想、特殊化思想",使之获得内心感受,提高了基本技能和解决问题的能力,也可以逐渐学会辩证地看待问题。 高中数学说课稿4大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。 一 教材分析 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 二 教法 根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三 学法: 指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。 四 教学过程 第一:创设情景,大概用2分钟 第二:实践探究,形成概念,大约用25分钟 第三:应用概念,拓展反思,大约用13分钟 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。 (二)探寻特例,提出猜想 1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。 3.让学生总结实验结果,得出猜想: 在三角形中,角与所对的边满足关系 这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。 (三)逻辑推理,证明猜想 1.强调将猜想转化为定理,需要严格的理论证明。 2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。 3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。 4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明 (四)归纳总结,简单应用 1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。 2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 3.运用正弦定理求解本节课引引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。 (五)讲解例题,巩固定理 1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形. 例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。 2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形. 高中数学说课稿5各位评委,老师们:大家好! 很高兴参加这次说课活动。这对我来说也是一次难得的学习和锻炼的机会,感谢各位老师在百忙之中来此予以指导。希望各位评委和老师们对我的说课内容提出宝贵意见。 我说课的内容是<平面向量>的教学,所用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本—必修)<数学>第一册下,教学内容为第96页至98页第五章第一节。本校是浙江省一级重点中学,学生基础相对较好。我在进行教学设计时,也充分考虑到了这一点。 下面我从教材分析,教学目标的确定,教学方法的选择和教学过程的设计四个方面来汇报我对这节课的教学设想。 一说教材 (1)地位和作用 向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系。向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用。 平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习。为学习向量的知识体系奠定了知识和方法基础。 (2)教学结构的调整 课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别。然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念。为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程。在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成。 (3)重点,难点,关键 由于本节课是本章内容的第一节课,是学生学习本章的基础。为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向。所以向量,相等向量的概念,向量的几何表示是这节课的重点。本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点。而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解。 二说教学目标的确定 根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标: (1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量。会根据图形判定向量是否平行,共线,相等。 (2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。 (3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。 三说教学方法的选择 Ⅰ教学方法 本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点: (1)由教材的特点确立类比思维为教学的主线。 从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似。因此在教学中运用类比作为思维的主线进行教学。让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程。 (2)由学生的特点确立自主探索式的学习方法 通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究。将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用。 Ⅱ教学手段 本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学。多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破。 四教学过程的设计 Ⅰ知识引入阶段———提出学习课题,明确学习目标 (1)创设情境——引入概念 数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。 由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等。这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣。 (2)观察归纳——形成概念 由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度。明确知道了有向线段的起点,方向和长度,它的终点就唯一确定。再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。 (3)讨论研究——深化概念 在得到概念后进行归纳,深化,之后向学生提出以下三个问题: ①向量的要素是什么? ②向量之间能否比较大小? ③向量与数量的区别是什么? 同时指出这就是本节课我们要研究和学习的主题。 Ⅱ知识探索阶段———探索平面向量的平行向量。相等向量等概念 (1)总结反思——提高认识 方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件。 (2)即时训练—巩固新知 为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。 [练习1]判断下列命题是否正确,若不正确,请简述理由. ①向量与是共线向量,则A、B、C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形的充要条件是=; ⑤模为0是一个向量方向不确定的充要条件; ⑥共线的向量,若起点不同,则终点一定不同. [练习2]下列命题正确的是( ) A.a与b共线,b与c共线,则a与c也共线 B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点 C.向量a与b不共线,则a与b都是非零向量 D.有相同起点的两个非零向量不平行 Ⅲ知识应用阶段————共线向量,相等向量等概念的初步应用 在本阶段的教学中,我采用的是课本上一道典型的例题:在一个复杂图形中观察,辨认平行,相等的有向线段。选用本题的目的是让学生进行独立思考,自主探究,交流讨论等探索活动,加深对概念的理解和对难点的突破。 例如图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量相等的向量。(同时思考:向量与相等么?向量与相等么?) 具体教学安排如下: (1)分析解决问题 先引导学生分析解决问题。包括向量的概念,:向量相等的概念。抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等。进而进行正确的辨认,直至最终解决问题。 (2)归纳解题方法 主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相 等;②两个向量只要它们的模相等,方向相同就是相等向量。一个向量只要不改变它的大小和方向,是可以任意平行移动的,既向量是自由的。 Ⅳ学习,小结阶段———归纳知识方法,布置课后作业 本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础。 具体的教学安排如下: (1)知识,方法小结在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解。 在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如: 类比,数形结合,等价转化等进行强调。 (2)布置课后作业 阅读教材96至97页内容,整理课堂笔记,习题5。1第1,2,3题。 高中数学说课稿6各位老师: 大家好! 我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计: 一、教材分析 1.教材所处的地位和作用 古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。 2.教学的重点和难点 重点:理解古典概型及其概率计算公式。 难点:古典概型的判断及把一些实际问题转化成古典概型。 二、教学目标分析 1.知识与技能目标 (1)通过试验理解基本事件的概念和特点 (2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。 2、过程与方法: 经历公式的推导过程,体验由特殊到一般的数学思想方法。 3、情感态度与价值观: (1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。 (2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。 三、教法与学法分析 1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。 2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。 ㈠创设情景、引入新课 在课前,教师布置任务,以小组为单位,完成下面两个模拟试验: 试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总; 试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。 在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。 1.用模拟试验的方法来求某一随机事件的概率好不好?为什么? 不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。 2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?] 「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。 ㈡思考交流、形成概念 学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。 [基本事件有如下的两个特点: (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和.] 「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。 例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件? 先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。 「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点 观察对比,发现两个模拟试验和例1的共同特点: 让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。 [经概括总结后得到: (1)试验中所有可能出现的基本事件只有有限个;(有限性) (2)每个基本事件出现的可能性相等。(等可能性) 我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。 「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。 ㈢观察分析、推导方程 问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算? 教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式: 「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。 提问: (1)在例1的实验中,出现字母"d"的概率是多少? (2)在使用古典概型的概率公式时,应该注意什么? 「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。 ㈣例题分析、推广应用 例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少? 学生先思考再回答,教师对学生没有注意到的关键点加以说明。 「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。 例3同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少? 先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。 「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。 ㈤探究思想、巩固深化 问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗? 要求学生观察对比两种结果,找出问题产生的原因。 「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。 ㈥总结概括、加深理解 1.基本事件的特点 2.古典概型的特点 3.古典概型的概率计算公式 学生小结归纳,不足的地方老师补充说明。 「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。 ㈦布置作业 课本练习1、2、3 「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。 高中数学说课稿7数学:人教A版必修3第二章第三节《变量之间的相关关系》说课稿各位老师: 大家好!我叫***,来自**。我说课的题目是《变量之间的相关关系》,内容选自于高中教材新课程人教A版必修3第二章第三节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计: 一、教材分析 1.教材所处的地位和作用 本章我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量的线性相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性. 2.教学的重点和难点 重点:①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系; ②利用散点图直观认识两个变量之间的线性关系; 难点:①变量之间相关关系的理解;②作散点图和理解两个变量的正相关和负相关 二、教学目标分析 1.知识与技能目标 通过收集现实问题中两个有关联变量的数据认识变量间的相关关系 2、过程与方法目标: 明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系. 3、情感态度与价值观目标: 通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想。 三、教学方法与手段分析 1.教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。 2。教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。 四、教学过程分析 ㈠问题引出: 请同学们如实填写下表(在空格中打“√”) 然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。 根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下: 物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还 有其它因素,如图所示(幻灯片给出): 因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。 「设计意图」通过对身边事例的分析,引出我们今天将要学习的主要内容,由此可以激起学 生们的学习兴趣,为接下来的学习打下良好的基础。 ㈡探究新知 ⒈概念形成 教师提问:“像刚才这种情况在现实生活中是否还有?”学生们思考之后,请几位同学就提出的问题作出回答。老师就举出的例子,引导学生作出分析,然后由老师总结得出相关关系的概念。[两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。] 「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。 ⒉探究线性相关关系和其他相关关系 「课件展示」 例1在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据: 问题:针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系? [教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:(幻灯片给出) ①如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);②如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);③如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。 「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律。 下面我们用TI图形计算器作出这两个变量的散点图。 学生实验:先把数据中成对出现的两个数分别作为横坐标、纵坐标,把数据输入到表格当中(第一列横坐标、第二列纵坐标);然后,用TI图形计算器作散点图: [引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。] 「设计意图」通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系。为后面回归直线和回归直线方程的学习做好铺垫。 「课件展示」四组数据,请学生作出散点图,并观察每组数据的特点。 根据四组数据,学生作出四个散点图。 通过学生讨论、交流、用TI图形计算器展示、对比自己作出的散点图,我们引出线性相关关系,正负相关关系的概念。 「设计意图」及时巩固知识,学生通过亲自动手作散点图,并交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。 ㈢例题讲解,深化认识 「课件展示」 例2一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。为了对这个问题进行调查,我们收集了北京市某中学20xx年高三年级96名学生的身高与右手一拃长的数据如下表。 (1)根据上表中的数据,制成散点图。你能从散点图中发现身高与右手一拃长之间的近似关系吗? (2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。 (3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗? 「设计意图」这个例子很容易激起学生们的学习兴趣,由此可达到更好的教学效果。通过对这道题的解答,使对前面知识的认识更加牢固。 ㈣反思小结、培养能力 ⑴变量间相关关系、线性关系和正负相关关系 ⑵如何做散点图 「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力 ㈤课后作业,自主学习 习题2.31、2 [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。 高中数学说课稿8函数的单调性 今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。 一、说教材 1、教材的地位和作用 本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。 2、学情分析 本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。 教学目标分析 基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分: 1.知识与技能(1)理解函数的单调性和单调函数的意义; (2)会判断和证明简单函数的单调性。 2.过程与方法 (1)培养从概念出发,进一步研究性质的意识及能力; (2)体会数形结合、分类讨论的数学思想。 3.情感态度与价值观 由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。 三、教学重难点分析 通过以上对教材和学生的分析以及教学目标,我将本节课的重难点 重点: 函数单调性的概念,判断和证明简单函数的单调性。 难点: 1.函数单调性概念的认知 (1)自然语言到符号语言的转化; (2)常量到变量的转化。 2.应用定义证明单调性的代数推理论证。 四、教法与学法分析 1、教法分析 基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。 2、学法分析 新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。 五、教学过程 为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。 (一)知识导入 温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。 (二)讲授新课 1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的? 通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。 2.观察函数y=x2随自变量x变化的情况,设置启发式问题: (1)在y轴的右侧部分图象具有什么特点? (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1 (3)如何用数学符号语言来描述这个规律? 教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。 (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢? 类似地分析图象在y轴的左侧部分。 通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1 仿照单调增函数定义,由学生说出单调减函数的定义。 教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。 (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解) (三)巩固练习 1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x 练习2:练习2:判断下列说法是否正确 ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。 ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。 1③已知函数y=,因为f(-1) 1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x 上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。 (四)归纳总结 我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。 (五)布置作业 必做题:习题2-3A组第2,4,5题。 选做题:习题2-3B组第2题。 新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。 二次函数的图像说课稿 今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。 一、教材分析 教材的地位和作用 本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。 学情分析 本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。 二、教学目标分析 基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分: 1.知识与技能 理解二次函数中参数a,b,c,h,k对其图像的影响; 2.过程与方法 通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。 3.情感态度与价值观 通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。 三、教学重难点分析 通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下 重点: 二次函数图像的平移变换规律及应用。 难点: 探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。 四、教法与学法分析 1、教法分析 基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。 2、学法分析 新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。 五、教学过程 为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。 (1)知识导入 温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。 (2)讲授新课 例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像 让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。 前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解, (3)巩固练习 我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。 (4)归纳总结 我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。 (5)布置作业 略 一、教学目标 (1)知识与能力目标:学习椭圆的定义,掌握椭圆标准方程的两种形式及其推 导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。 (2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探 索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。 (3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。 二、教学重点、难点 (1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。 (2)教学难点:椭圆标准方程的建立和推导。 三、教学过程 (一)创设情境,引入概念 1、动画演示,描绘出椭圆轨迹图形。 2、实验演示。 思考:椭圆是满足什么条件的点的轨迹呢? (二)实验探究,形成概念 1、动手实验:学生分组动手画出椭圆。 实验探究: 保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、概括椭圆定义 引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。 思考:焦点为的椭圆上任一点M,有什么性质? 令椭圆上任一点M,则有 (三)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? 2、研讨探究 问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有 ,尝试推导椭圆的方程。 思考:如何建立坐标系,使求出的方程更为简单? 将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。 方案一方案二 按方案一建立坐标系,师生研讨探究得到椭圆标准方程 =1(),其中b2=a2-c2(b>0); 选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b>0)。 教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。 (四)归纳概括,方程特征 1、观察椭圆图形及其标准方程,师生共同总结归纳 (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴; (2)椭圆标准方程形式:左边是两个分式的平方和,右边是1; (3)椭圆标准方程中三个参数a,b,c关系:; (4)椭圆焦点的位置由标准方程中分母的大小确定; (5)求椭圆标准方程时,可运用待定系数法求出a,b的值。 2、在归纳总结的基础上,填下表 标准方程 图形a,b,c关系焦点坐标焦点位置 在x轴上 在y轴上 (五)例题研讨,变式精析 例1、求适合下列条件的椭圆的标准方程 (1)两个焦点的坐标分别是,椭圆上一点P到两焦点距离和等于10。 (2)两焦点坐标分别是,并且椭圆经过点。 例2、(1)若椭圆标准方程为及焦点坐标。 (2)若椭圆经过两点求椭圆标准方程。 (3)若椭圆的一个焦点是,则k的值为。 (A)(B)8(C)(D)32 例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段,求线段中点M的轨迹。 (六)变式训练,探索创新 1、写出适合下列条件的椭圆标准方程 (1),焦点在x轴上; (2)焦点在x轴上,焦距等于4,并且经过点P; 2、若方程表示焦点在y轴上的椭圆,则k的范围。 3、已知B,C是两个定点,周长为16,求顶点A的轨迹方程。 4、已知椭圆的焦距相等,求实数m的值。 5、在椭圆上上求一点,使它与两个焦点连线互相垂直。 6、已知P是椭圆上一点,其中为其焦点且,求三解形面积。 (七)小结归纳,提高认识 师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。 (八)作业训练,巩固提高 课本第96页习题§8。1第3题、第5题、第6题。 课后思考题: 1、知是椭圆的两个焦点,AB是过的弦,则周长是。 (A)2a(B)4a(C)8a(D)2a2b 2、的两个顶点A,B的坐标分别是边AC,BC所在直线的斜 率之积等于,求顶点C的轨迹方程。 2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线? 教学设计说明 椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。 椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。 椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。 设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。 一、说教材 1、 教材的地位和作用 《集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。 2、 教学目标 (1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念; b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。 (2)能力目标:a、让学生感知数学知识与实际生活得密切联系,培养学生解决实际的能力; b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。 (3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度; b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。 3、重点和难点 重点:集合的概念,元素与集合的关系。 难点:准确理解集合的概念。 二、学情分析(说学情) 对于中职生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析理解、解决实际问题的能力,在运算能力、思维能力等方面参差不齐,学生学好数学的自信心不强,学习积极性不高,有厌学情绪。 三、说教法 针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。 四、学习指导(说学法) 教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。 五、教学过程 1、引入新课: a、创设情境,揭示本课主题,同时对集合的整体性有个初步的感性认识。 b、介绍集合论的创始者康托尔 2、究竟什么是集合?(实例探究)切合学生现有的认知水平, 以学生熟悉的事物(物体),以实际生活为背景进行探究, 为本课教学创造出一种自然和谐的氛围,充分调动学生的学习热情接待探究过程学生积极思考、交流、作答,教师针对学生的回答启发,引导学生寻找实例中的共同特征,培养学生观察,总结能力范围由具体到抽象,由感性到理性,为下面水到渠成的介绍集合概念做好铺垫。 3、集合的概念,本课的重点。结合探究中的实例,让学生说出集合和元素各是什么?知识的呈现由抽象到具体进一步熟悉元素与集合的概念,让学生分清实际问题中的集合和元素为后面学习两者间的关系做好铺垫。 教师在这一环节做好学习指导,确定的对象组成的整体叫集合,如果对象不确定,就不能确定为集合(举例)加深对概念的理解。 4、 熟悉巩固集合的概念通过例题,练习、帮助学生进一步熟悉和理解集合的概念。 5、 集合的符号记法,为本节重点做好铺垫。 6、 从实例入行手,探索元素和集合的关系,学生能用文字语言描述,如何用数学语言描述,给出元素与集合关系符号表示,在这个环节教师适当引导学生积极主动参与到知识逐步形成过程,便于学生理解和掌握,落实本课的重点,学习指导:⑴集合元素的确定。⑵理解两符号的含义。 7、 思考交流本课的重要环节在课堂上给学生提供充分的活动时间和空间。通过自由举例,能深化概念。同时还能提升学生的分析能力表达自己见解的能力。 8、 从所举的例子中抽象出数集的概念,并给出常见数集的记法。 9、 学生练习:通过练习,识记常见数集的记法,同时进一步巩固元素与集合间的关系。 10、知识的实际应用: 问题不难,落实课本能力目标,培养学生运用数学的意识和能力初步培养学生应用集合的眼光观看世界。 11、课堂小节 以学生小节为主教师帮助为辅,巩固所学知识,帮助学生认识到要学会梳理所学内容,要学会总结反思,使学生的认识进一步升华,培养学生的鬼纳总结能力。 六、评价 教学评价的及时能有效调动课堂气氛,感染学生的.情绪,对课堂教学发挥着积极作用,教学过程遵重学生之间的差异培养学生应用集合的眼光看研究对象,注重过程评价与多元评价将教学评价贯穿于本堂课的每个教学环节。 七、教学反思 1、 通过现实生活中的实例,从特殊到一般,在具体感知基础上得出集合的描述概念,便于学生理解接受。 2、 启发探究教学,营造学生的学习氛围,培养学生自主学习,合作交流的能力。 八、板书设计 一、地位作用 数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。 基于此,设计本节的数学思路上: 利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。 二、教学目标 知识目标:1)理解等比数列的概念 2)掌握等比数列的通项公式 3)并能用公式解决一些实际问题 能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。 三、教学重点 1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点 2)等比数列的通项公式的推导及应用 四、教学难点 “等比”的理解及利用通项公式解决一些问题。 五、教学过程设计 (一)预习自学环节。(8分钟) 首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。 回答下列问题 1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。 2)观察以下几个数列,回答下面问题: 1, , , ,…… -1,-2,-4,-8…… 1,2,-4,8…… -1,-1,-1,-1,…… 1,0,1,0…… ①有哪几个是等比数列?若是公比是什么? ②公比q为什么不能等于零?首项能为零吗? ③公比q=1时是什么数列? ④q>0时数列递增吗?q<0时递减吗? 3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导? 4)等比数列通项公式与函数关系怎样? (二)归纳主导与总结环节(15分钟) 这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。 通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”; ②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。 ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。 通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。 法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。 法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。 一、教材分析 1。《指数函数》在教材中的地位、作用和特点 《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。 此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2。教学目标、重点和难点 通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下: (1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题; (2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力; (3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。 (4)教学重点:指数函数的图象和性质。 (5)教学难点:指数函数的图象性质与底数a的关系。 突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、教法设计 由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1。创设问题情景。按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2。强化“指数函数”概念。引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。 3。突出图象的作用。在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。 4。注意数学与生活和实践的联系。数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。 三、学法指导 本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试: 1。再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2。领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3。在互相交流和自主探 一、教材分析 1.教材所处的地位和作用 本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。 2 教学的重点和难点 重点:两种排序法的排序步骤及计算机程序设计 难点:排序法的计算机程序设计 二、教学目标分析 1.知识与技能目标: 掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。 2.过程与方法目标: 能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。 3.情感,态度和价值观目标 通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。 三、教学方法与手段分析 1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。 2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。 四、学法分析 模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。 五、教学过程分析 一、创设情境 提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢? 通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法 二、探索新知 这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题: (1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别? (2)冒泡法排序中对5个数字进行排序最多需要多少趟? (3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次? 提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。 三、知识应用 例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序 (根据刚刚提问所总结的方法完成解题步骤) 练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果. (及时将学到的知识应用,有利于知识的掌握) 例2 设计冒泡排序法对5个数据进行排序的程序框图. (在之前所学习知识的基础上画出程序框图,然后给出一个思考题) 思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序? (之后出一个练习题,找出思考题的答案) 练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。 (这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。) 四、课堂小结: (1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤 (2两种排序法的计算机程序设计 (3)注意循环语句的使用与算法的循环次数,对算法进行改进。 通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。 一、教材分析 1、教材所处的地位和作用 奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。 奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。 2、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、 3、教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 【知识与技能】 1、能判断一些简单函数的奇偶性。 2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 【过程与方法】 经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 【情感、态度与价值观】 通过自主探索,体会数形结合的思想,感受数学的对称美。 从课堂反应看,基本上达到了预期效果。 4、教学重点和难点 重点:函数奇偶性的概念和几何意义。 几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。 难点:奇偶性概念的数学化提炼过程。 由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。 二、教法与学法分析 1、教法 根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。 2、学法 让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。 三、教学过程 具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。 (一)设疑导入、观图激趣 由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。 用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。 (二)指导观察、形成概念 在这一环节中共设计了2个探究活动。 探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。 在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。 (三) 学生探索、领会定义 探究3 下列函数图象具有奇偶性吗? 设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点) (四)知识应用,巩固提高 在这一环节我设计了4道题 例1判断下列函数的奇偶性 选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。 例1设计意图是归纳出判断奇偶性的步骤: (1) 先求定义域,看是否关于原点对称; (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。 例2 判断下列函数的奇偶性: 例3 判断下列函数的奇偶性: 例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型? 例4(1)判断函数的奇偶性。 (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗? 例4设计意图加强函数奇偶性的几何意义的应用。 在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。 (五)总结反馈 在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。 在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。 (六)分层作业,学以致用 必做题:课本第36页练习第1-2题。 选做题:课本第39页习题1、3A组第6题。 思考题:课本第39页习题1、3B组第3题。 设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。 说教学目标 A、知识目标: 掌握等差数列前n项和公式的推导方法;掌握公式的运用。 B、能力目标: (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。 (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。 (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。 C、情感目标:(数学文化价值) (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。 (2)通过公式的运用,树立学生"大众教学"的思想意识。 (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。 说教学重点: 等差数列前n项和的公式。 说教学难点: 等差数列前n项和的公式的灵活运用。 说教学方法: 启发、讨论、引导式。 教具: 现代教育多媒体技术。 教学过程 一、创设情景,导入新课。 师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。 例1,计算:1+2+3+4+5+6+7+8+9+10。 这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。 生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。 生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。 上面两式相加得2S=11+10+。。。。。。+11=10×11=110 10个 所以我们得到S=55, 即1+2+3+4+5+6+7+8+9+10=55 师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。 理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢? 生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。 二、教授新课(尝试推导) 师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。 生4:Sn=a1+a2+。。。。。。an—1+an也可写成 Sn=an+an—1+。。。。。。a2+a1 两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1) n个 =n(a1+an) 所以Sn=(I) 师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得 Sn=na1+ d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。 三、公式的应用(通过实例演练,形成技能)。 1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算: (1)1+2+3+。。。。。。+n (2)1+3+5+。。。。。。+(2n—1) (3)2+4+6+。。。。。。+2n (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n 请同学们先完成(1)—(3),并请一位同学回答。 生5:直接利用等差数列求和公式(I),得 (1)1+2+3+。。。。。。+n= (2)1+3+5+。。。。。。+(2n—1)= (3)2+4+6+。。。。。。+2n==n(n+1) 师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。 生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以 原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n) =n2—n(n+1)=—n 生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法: 原式=—1—1—。。。。。。—1=—n n个 师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。 例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。 生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4 又∵d=—2,∴a1=6 ∴S12=12 a1+66×(—2)=—60 生9:(2)由a1+a2+a3=12,a1+d=4 a8+a9+a10=75,a1+8d=25 解得a1=1,d=3 ∴S10=10a1+=145 师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。 师:(继续引导学生,将第(2)小题改编) ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。 2、用整体观点认识Sn公式。 例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解) 师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么? 生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。 师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。 师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。 最后请大家课外思考Sn公式(1)的逆命题: 已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。 四、小结与作业。 师:接下来请同学们一起来小结本节课所讲的内容。 生11:1、用倒序相加法推导等差数列前n项和公式。 2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。 生12:1、运用Sn公式要注意此等差数列的项数n的值。 2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。 3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。 师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。 本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。 数学思想:类比思想、整体思想、方程思想、函数思想等。 作业:P49:13、14、15、17 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。