标题 | 长方体和正方体体积教学设计 |
范文 | 长方体和正方体体积教学设计 作为一名优秀的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以更好地组织教学活动。怎样写教学设计才更能起到其作用呢?下面是小编精心整理的长方体和正方体体积教学设计,欢迎大家分享。 长方体和正方体体积教学设计1教学目标: 1、知道容积的意义。 2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。 3、会计算物体的容积。 教学重点: 1、容积的概念。 2、容积与体积的关系。 教学难点:容积与体积的关系。 教具:量筒和量杯、不同的饮料瓶、纸杯 教学过程: 一、复习检查: 说出长正方体体积计算公式。 二、准备: 把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是()。 三、新授: 1、认识容积及容积单位: (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。 通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。 (2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。 (3)演示:体积单位与容积单位的关系。 说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。 1升(l)=1000毫升(ml) 将1升的水倒入1立方分米的容器里。 小结: 1升(l)=1立方分米(dm3) 1升=1立方分米 1000毫升1000立方厘米 1毫升(ml)=1立方厘米(cm3) 练一练: 1.8l=()ml;3500ml=()l;15000cm;3=()ml=()l;1.5dm3=()l (4)小组活动: (1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯? (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。 2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。 例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升? 5×4×2=40(立方分米)40立方分米=40升 答:这个油箱可以装汽油40升。 做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正) 小结:计算容积的步骤是什么? 3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢? 出示一个西红柿,谁有办法计算它的体积?小组设计方案: 西红柿的体积=350—200=(ml) =(cm3) 四、巩固练习: 1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2。5分米,它的容积是多少升? 2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米? 3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少? 4、提高题:p55、16 五、作业: 第三单元长方体和正方体体积教学设计第五课时容积相关内容:课题六:用方程和用算术方法解应用题的比较平行四边形的面积教案质数和合数教学设计小数乘整数《2,5倍数的特征》教学实录《2和5的倍数的特征》教案第四单元分数的意义和性质求两个数的最大公因数(小学数学五年级上册第三单元)简单立体图形的组合. 长方体和正方体体积教学设计2教学目标 知识与技能 (1)理解体积的含义。 (2)认识常用的体积单位:立方米、立方分米、立方厘米。 (3)能正确区分长度单位、面积单位和体积单位的不同。 过程与方法 (1)运用观察实验的方法理解体积的含义。 (2)结合生活中的事物感知体积单位的大小。 情感态度与价值观 (1)发展学生的空间观念,培养学生的思维能力。 (2)渗透事物之间普遍联系的辩证唯物主义。 教学重点使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。 教学难点帮组学生建立体积是1立方米、1立方分米、1立方厘米的大小的表象,能正确应用体积单位估算常见物体的体积。 教学用具教师准备:盛有红色水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;投影仪和1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。学生准备:12个1立方厘米的正方体学具。 教学过程 一、揭示课题 我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。 二、探索研究 1.实验观察 观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么? 观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么? 观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么? 图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大? 结论:物体所占空间的大小叫做物体的体积。(板书课题:体积) 加深理解:(1)你知道什么是长方体和正方体的体积?(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?(3)做第30页的“做一做”。 2.教学体积单位。 (1)介绍体积单位。 常用的体积单位有:立方米、立方分米、立方厘米。 (2)1立方米、1立方分数、1立方厘米的体积各有多大。 1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。②看看我们身边的什么的体积大约1立方厘米。 1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。 1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米? (3)建立表象,感知大小 投影显示第36页的第2题,让学生口答。 3.长度单位、面积单位、体积单位的联系与区别。 投影显示第31页的“做一做”的第一题,让学生说。 三、课堂实践 1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。 2、做练习七的第3题,学生独立做后集体订正。 四、课堂小结 学生小结今天学习的内容。 旁批: 后记: 长方体和正方体体积教学设计3教学目标 1.理解并掌握长方体和正方体体积的计算方法. 2.能运用长、正方体的体积计算解决一些简单的实际问题. 3.培养学生归纳推理,抽象概括的'能力. 教学重点 长方体和正方体体积的计算方法. 教学难点 长方体和正方体体积公式的推导. 教学用具 教具:1立方厘米的立方体24块,1立方分米的立方体1块. 学具:1立方厘米的立方体20块. 教学过程 一、复习准备. 1.提问:什么是体积? 2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排. 教师提问:拼成了一个什么形体?(长方体) 这个长方体的体积是多少?(4立方厘米) 你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成) 如果再拼上一个1立方厘米的正方体呢?(5立方厘米) 谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们 来学习怎样计算长方体和正方体的体积. 板书课题:长方体和正方体的体积 二、学习新课. (一)长方体的体积【演示动画“长方体体积1”】 1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆 出的长方体的长、宽、高. 2.学生汇报,教师板书: 教师提问:这些长方体有什么共同点?(体积相等) 不同点?(数据不同) 为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位—— 12个1立方厘米) 教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么? 师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1 立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层. 3.【演示动画 “长方体体积2”】 第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积. 一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层 第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体. 一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层 第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积. 一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层 思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长 方体的体积有没有关系?是什么关系? (长方体的体积正好等于它的长、宽、高的乘积) 教师板书:长方体的体积=长×宽×高 教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成: 板书: V=abh. 出示投影图: 4.自学例1. 一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少? 7×4×3=84(立方厘米) 答:它的体积是84立方厘米. (二)正方体体积. 1.【演示课件“正方体体积”】 教师提问:此时的长,宽,高各是多少? 变成了什么图形? 这个正方体的体积可以求出来吗? 2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米) 棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米) 3.归纳正方体体积公式. 教师板书:正方体体积=棱长×棱长×棱长. 用V表体积,a表示棱长 V=a·a·a或者V= 4.独立解答例2. 光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米? (分米3) 答:体积是125立方分米. (三)讨论长方体和正方体的体积计算方法是否相同. 学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中 b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高. 三、巩固反馈. 1.口答填表. 长 方 体 长/分米 宽/分米 高/分米 体积(立方分米) 5 1 2 4 3 5 10 2 4 正 方 体 棱长/米 体积(立方米) 6 30 0.4 2.判断正误并说明理由. ① ( ) ② ( ) ③一个正方体棱长4分米,它的体积是: (立方分米)( ) ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( ) 四、课堂总结. 今天这节课我们学习了新知识?谁来说一说? 五、课后作业. 1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米? 2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克? 六、板书设计.教学目标 1.理解并掌握长方体和正方体体积的计算方法. 2.能运用长、正方体的体积计算解决一些简单的实际问题. 3.培养学生归纳推理,抽象概括的能力. 教学重点 长方体和正方体体积的计算方法. 教学难点 长方体和正方体体积公式的推导. 教学用具 教具:1立方厘米的立方体24块,1立方分米的立方体1块. 学具:1立方厘米的立方体20块. 教学过程 一、复习准备. 1.提问:什么是体积? 2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排. 教师提问:拼成了一个什么形体?(长方体) 这个长方体的体积是多少?(4立方厘米) 你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成) 如果再拼上一个1立方厘米的正方体呢?(5立方厘米) 谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们 来学习怎样计算长方体和正方体的体积. 板书课题:长方体和正方体的体积 二、学习新课. (一)长方体的体积【演示动画“长方体体积1”】 1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆 出的长方体的长、宽、高. 2.学生汇报,教师板书: 教师提问:这些长方体有什么共同点?(体积相等) 不同点?(数据不同) 为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位—— 12个1立方厘米) 教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么? 师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1 立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层. 3.【演示动画 “长方体体积2”】 第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积. 一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层 第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体. 一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层 第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积. 一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层 思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长 方体的体积有没有关系?是什么关系? (长方体的体积正好等于它的长、宽、高的乘积) 教师板书:长方体的体积=长×宽×高 教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成: 板书: V=abh. 出示投影图: 4.自学例1. 一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少? 7×4×3=84(立方厘米) 答:它的体积是84立方厘米. (二)正方体体积. 1.【演示课件“正方体体积”】 教师提问:此时的长,宽,高各是多少? 变成了什么图形? 这个正方体的体积可以求出来吗? 2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米) 棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米) 3.归纳正方体体积公式. 教师板书:正方体体积=棱长×棱长×棱长. 用V表体积,a表示棱长 V=a·a·a或者V= 4.独立解答例2. 光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米? (分米3) 答:体积是125立方分米. (三)讨论长方体和正方体的体积计算方法是否相同. 学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中 b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高. 三、巩固反馈. 1.口答填表. 长 方 体 长/分米 宽/分米 高/分米 体积(立方分米) 5 1 2 4 3 5 10 2 4 正 方 体 棱长/米 体积(立方米) 6 30 0.4 2.判断正误并说明理由. ① ( ) ② ( ) ③一个正方体棱长4分米,它的体积是: (立方分米)( ) ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( ) 四、课堂总结. 今天这节课我们学习了新知识?谁来说一说? 五、课后作业. 1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米? 2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克? 六、板书设计. 长方体和正方体体积教学设计4教学基本 内容六年制小学数学第十一册P25—26。 教学目的和要求 1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。 2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。 3、培养学生初步的归纳推理、抽象概括的能力。 教学重点 及难点探索并掌握长方体和正方体体积的计算方法。 长方体和正方体体积公式的推导。 教学方法 及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。 学法指导 讨论交流,并认真听讲思考。 集体备课个性化修改 预习阅读书本25、26页,并初步理解解 教学环节设计 一、以旧引新 师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下? 要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题) 二、探究新知 1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。 师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。 师:将摆出的长方体放在桌上,并编号。 请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。 引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。 问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么? 师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢? 依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体? 师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗? 2、验证、交流后归纳出长方体的体积计算公式及字母公式。 通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积? 通过交流得出公式:长方体的体积=长×宽×高。 问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗? 交流得出:V=abh. 3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。 师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗? 交流得出:正方体的体积=棱长×棱长×棱长。 重点理解的含义,进一步明确的读法、写法。 做“试一试”。 作业做“练一练”。 做练习六第2题 课堂作业:做练习六第1、2题 板书设计 执行情况与课后小结 长方体和正方体体积教学设计5教学目标: 1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。 2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。 3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。 教学重点和难点: 长方体和正方体体积的计算方法,以及其体积公式的推导。 教学过程: 一、复习引入 (1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少? (2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少? 二、学习新课 探究正方体体积公式: 问:通过计算2号长方体的体积你们发现了什么? 引导学生明确: (1)这个长方体长、宽、高都相等,实际上它是一个正方体。 (2)正方体体积=棱长×棱长×棱长(板书) (3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a 教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书) 三、议一议 长方体和正方体的体积公式有什么相同点? 长方体和正方体底面的面积叫做底面积。 长方体(或正方体)的体积=底面积×高 如果用S表示底面积,上面的公式可以写成: V=Sh 四、巩固练习 计算下面图形的体积 板书设计: 正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高 V=a3 V=Sh 长方体和正方体体积教学设计6一、教材分析: 本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。 二、教学目标: 1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。 2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。 3、培养学生数学的应用意识。 重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。 难点:理解体积公式的意义。 三、教法与学法 学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。 为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习. 四、教学过程 (一)激情引趣,揭示课题。 任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。 1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。 2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。 这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。 (二)操作想象,探索公式。 小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。 具体的过程是: (1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积 (2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。 (3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系? 这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。 (4)用字母表示公式,要注意书写形式的指导。 (5)完成例1,学以致用,加深理解。 通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。 (三)巩固练习,扩展应用 练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习: 1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。 2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。 拓展运用: 完成练习七第5—8题,让学生运用公式计算。 设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。 (四)总结全课,质疑解惑。 (1)谈收获:让学生说说这节课学习了什么? (2)质疑解惑:还有什么疑问。 这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。