标题 | 奥数题及答案解析 |
范文 | 经典奥数题及答案解析 现如今,我们会经常接触并使用试题,试题是命题者根据测试目标和测试事项编写出来的。一份什么样的试题才能称之为好试题呢?下面是小编为大家收集的经典奥数题及答案解析,希望对大家有所帮助。 奥数题及答案解析 1 1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元? 2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克? 3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米? 4、小军和小强付同样多的钱买了同一种铅笔,小军要了13支,小强要了7支,小军又给小强0.6元钱。每支铅笔多少钱? 5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计) 6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组? 7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨? 8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米? 9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元? 10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米? 11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃? 12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队? 13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克? 14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元? 15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆? 16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米? 17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双? 18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋? 19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元? 20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少? 21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米? 22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克? 23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克? 24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本? 25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克? 26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分? 27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人? 28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米? 29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米? 30、有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个? 31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米? 32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨? 33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人? 34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人? 35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元? 36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁? 37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油? 38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答? 39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒? 40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分? 41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远? 42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇? 43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少? 44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元? 45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米? 46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球? 47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。 48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍? 49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支? 50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积? 参考解答 【1】 想: 由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。 解: 一把椅子的价钱: 288÷(10-1)=32(元) 一张桌子的价钱: 32×10=320(元) 答: 一张桌子320元,一把椅子32元。 【2】 想: 可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。 解: 45+5×3 =45+15 =60(千克) 答: 3箱梨重60千克。 【3】 想: 根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。 解: 4×2÷4 =8÷4 =2(千米) 答: 甲每小时比乙快2千米。 【4】 想: 根据两人付同样多的钱买同一种铅笔和小军要了13支,小强要了7支,可知每人应该得(13+7)÷2支,而小军要了13支比应得的多了3支,因此又给小强0.6元钱,即可求每支铅笔的价钱。 解: 0.6÷[13-(13+7)÷2] =0.6÷[13-20÷2] =0.6÷3 =0.2(元) 答: 每支铅笔0.2元。 【5】 想: 根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。 解: 下午2点是14时。 往返用的时间:14-8=6(时) 两地间路程:(40+45)×6÷2 =85×6÷2 =255(千米) 答: 两地相距255千米。 【6】 想: 第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。 解: 第一组追赶第二组的路程: 3.5-(4.5- 3.5)=3.5-1=2.5(千米) 第一组追赶第二组所用时间: 2.5÷(4.5-3.5)=2.5÷1=2.5(小时) 答: 第一组2.5小时能追上第二小组。 【7】 想: 根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。 解: 乙仓存粮: (32.5×2+5)÷(4+1) =(65+5)÷5 =70÷5 =14(吨) 甲仓存粮: 14×4-5 =56-5 =51(吨) 答: 甲仓存粮51吨,乙仓存粮14吨。 【8】 想: 根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。 解: 乙每天修的米数: (400-10×4)÷(4+5) =(400-40)÷9 =360÷9 =40(米) 甲乙两队每天共修的米数: 40×2+10=80+10=90(米) 答: 两队每天修90米。 【9】 想: 已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。 解: 每把椅子的价钱: (455-30×6)÷(6+5) =(455- 180)÷11 =275÷11 =25(元) 每张桌子的价钱: 25+30=55(元) 答: 每张桌子55元,每把椅子25元。 【10】 想: 根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。 解: (7+65)×[40÷(75- 65)] =140×[40÷10] =140×4 =560(千米) 答: 甲乙两地相距 560千米。 【11】 想: 根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。 解: (20×250-4400)÷(10+20) =600÷120 =5(箱) 答: 损坏了5箱。 【12】 想: 因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。 解: 4×2÷(12-4) =4×2÷8 =1(时) 答: 第二中队1小时能追上第一中队。 【13】 想: 由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。 解: 原计划烧煤天数: (1500+1000)÷(1500-1000) =2500÷500 =5(天) 这堆煤的重量: 1500×(5-1) =1500×4 =6000(千克) 答: 这堆煤有6000千克。 【14】 想: 小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。 解: 每本练习本比每支铅笔贵的钱数: 0.45÷(8-5)=0.45÷3=0.15(元) 8个练习本比8支铅笔贵的钱数: 0.15×8=1.2(元) 每支铅笔的价钱: (3.8-1.2)÷(5+8)=2.6÷13=0.2(元) 也可以用方程解: 设一枝铅笔X元,则一本练习本为 元。 8X+5×=3.8-0.45 64X+19-25X=30.4-3.6 39X=7.8 X=0.2 答: 每支铅笔0.2元。 【15】 想: 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。 解: 卡车的数量: 360÷[10×6÷(8-6)] =360÷[10×6÷2] =360÷30 =12(辆) 客车的数量: 360÷[10×6÷(8-6)+10] =360÷[30+10] =360÷40 =9(辆) 答: 可用卡车12辆,客车9辆。 【16】 想: 根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。 解: 已修的天数: (720×3-1200)÷80 =960÷80 =12(天) 公路全长: (720+80)×12+1200 =800×12+1200 =9600+1200 =10800(米) 答: 这条公路全长10800米。 【17】 想: 根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。 解: 12个纸箱相当木箱的个数: 2×(12÷3)=2×4=8(个) 一个木箱装鞋的双数: 1800÷(8+4)=18000÷12=150(双) 一个纸箱装鞋的双数: 150×2÷3=100(双) 答: 每个纸箱可装鞋100双,每个木箱可装鞋150双 【18】 想: 由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。 解: 水泥用完的天数: 120÷(30×2-40)=120÷20=6(天) 水泥的总袋数: 30×6=180(袋) 沙子的总袋数: 180×2=360(袋) 答: 运进水泥180袋,沙子360袋。 【19】 想: 根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。 解: 每个茶杯的价钱: 90÷(4×5+10)=3(元) 每个保温瓶的价钱: 3×4=12(元) 答: 每个保温瓶12元,每个茶杯3元。 【20】 想: 已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。 解: 第一个加数: 572÷(10+1)=52 第二个加数: 52×10=520 答: 这两个加数分别是52和520。 【21】 想: 由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。 解: 9-(16-9) =9-7 =2(千克) 答: 桶重2千克。 【22】 想: 由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。 解: (10-5.5)×2=9(千克) 答: 原来有油9千克。 【23】 想: 由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。 解: (22-10)÷(5-2) =12÷3 =4(千克) 答: 桶里原有水4千克。 【24】 想: 从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。 解: 小华有书的本数: (36-5×2)÷2=13(本) 小红有书的本数: 13+5×2=23(本) 答: 原来小红有23本,小华有13本。 【25】 想: 由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。 解: 15×5÷(5-2)=25(千克) 答: 原来每桶油重25千克。 【26】 想: 把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。 解: 9÷(3-1)×(5-1)=18(分) 答: 锯成5段需要18分钟。 【27】 想: 女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。 解: 35÷(2-1)=35(人) 女工原有: 35+17=52(人) 男工原有: 52+35=87(人) 答: 原有男工87人,女工52人。 【28】 想: 由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。 解: 12×5÷(5+1)=10(千米) 答: 返回时平均每小时行10千米。 【29】 想: 由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。 解: 18÷(5+4)=2(小时) 8×2=16(千米) 答: 狗跑了16千米。 【30】 想: 由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。 解: 总个数: (21+20+19)÷2=30(个) 白球:30-21=9(个) 红球:30-20=10(个) 黄球:30-19=11(个) 答: 白球有9个,红球有10个,黄球有11个。 【31】 想: 根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。 解: (33-18)÷(5-2)=5(米) 18-5×2=8(米) 答: 一根粗钢管长8米,一根细钢管长5米。 【32】 想: 由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。 解: 4.8×10÷(12-10)=24(吨) 答: 原计划每天生产水泥24吨。 【33】 想: 由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。 解: 70+30-80 =100-80 =20(人) 答: 既唱歌又跳舞的有20人。 【34】 想: 参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语 文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。 解: 36+38+5-59=20(人) 答: 双科都参加的有20人。 【35】 想: 由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。 解: 5×(4÷2)+6=16(把) 640÷16=40(元) 40×5÷2=10O(元) 答: 桌子和椅子的单价分别是100元、40元。 【36】 想: 5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。 解: (45-5)÷4+5 =10+5 =15(岁) 答: 今年儿子15岁。 【37】 想: “如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。 解: 18×2÷(4-1)=12(千克) 12×4=48(千克) 答: 原来甲桶有油48千克,乙桶有油12千克。 【38】 想: 根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。 解: (5×20-75)÷8=2(题)……5(分) 20-2-1=17(题) 答: 答对17题,答错2题,有1题没答。 【39】 想: “从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。 解: (240+264)÷(20+16) =504÷30 =14(秒) 答: 从两车头相遇到两车尾相离,需要14秒。 【40】 想: 火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。 解: (600+1150)÷700 =1750÷700 =2.5(分) 答: 火车通过隧道需2.5分。 【41】 想: 在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。 解: 60×2÷(60-50)=12(分) 50×12=600(米) 答: 小明从家里到学校是600米。 【42】 想: 由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。 解: 600÷(400-300) =600÷100 =6(分) 答: 经过6分钟两人第一次相遇 【43】 想: 由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。 解: (12÷2)×(8÷2)=24(平方厘米) 答: 这个长方形纸板原来的面积是24平方厘米。 【44】 想: 用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。 解: (20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元) 答: 每千克梨1.8元。 【45】 想: 由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。 解: 135÷3÷(2+1)=15(千米) 15×2=30(千米) 答: 甲乙每小时分别行30千米、15千米。 【46】 想: 两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。 解: 12÷(8-5)=4(次) 8×4+5×4+12=64(个) 或8×4×2=64(个) 答: 一共取了4次,盒子里共有64个球。 【47】 想: 1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。 解: 12和18的最小公倍数是36 6时+36分=6时36分 答: 下次同时发车时间是上午6时36分。 【48】 想: 父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。 解: (45-15)÷(11-1)=3(岁) 15-3=12(年) 答: 12年前父亲的年龄是儿子年龄的11倍。 【49】 想: 根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。 解: 2、3、4、5的最小公倍数是60 60-1=59(支) 答: 这盒铅笔最少有59支。 【50】 想: 根据只把底增加8米,面积就增加40平方米, 可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。 解: (40÷5)×(40÷8)=40(平方米) 答: 平行四边形地原来的面积是40平方米。 奥数题及答案解析 2 一个三位数,若它的中间数字恰好是首尾数字的平均值,则称它是“好数”则好数总共有_______个. 答案与解析: 方法一:当十位为1 时,共有111,210 共2 个; 当十位为2 时,共有:123;222;321;420 共4 个; 当十位为3 时,共有:135;234;333;432;531;630 共6 个; 当十位为4 时,共有:147;246;345;444;543;642;741;840 共8 个; 当十位为5 时,共有:159;258;357;456;555;654;753;852;951 共9 个; 当十位为6 时,共有:369;468;567;666;765;864;963;共7 个; 当十位为7 时,共有:579;678;777;876;975;共5 个; 当十位为8 时,共有:789;888;987 共3 个; 当十位为9 时,共有:999 共1 个; 所以,中间数字恰好是首尾数字的平均值的好数共有:45 个. 方法二:(对应法)根据题意,如果百位和个位数字确定后,十位数字就确定,因此百位和个位数字的取法个数,就是好数的个数,又因为百位数字和个位数字的奇偶性相同,对于百位有9种选法,百位选定后个位数字有5种选择,因此有9×5=45个好数。 奥数题及答案解析 3 1.周长 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米? 解答:86+88+90=264厘米 【小结】因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。 2.数论 把25拆成若干个正整数的和,使它们的积最大。 解答:积37×22=8748为最大。 【小结】先从较小数形开始实验,发现其规律: 把6拆成3+3,其积为3×3=9最大; 把7拆成3+2+2,其积为3×2×2=12最大; 把8拆成3+3+2,其积为3×3×2=18最大; 把9拆成3+3+3,其积为3×3×3=27最大;…… 这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。 3.抽屉问题 城市举行小学生数学竞赛,共20道题,有20分基础分,答对一题给3分,不答给1分,答错一题倒扣1分,若有1978人参加竞赛,问至少有人得分相同 【分析】20+3×20=80,20-1×20=0,所以若20道题全答对可得最高分80分,若全答错得最低分0分.由于每一道题都得奇数分或扣奇数分,20个奇数相加减所得结果为偶数,再加上20分基础分仍为偶数,所以每个人所得分值都为偶数.而0到80之间共41个偶数,所以一共有41种分值,即41个抽屉,1978÷41=48……10,所以至少有49人得分相同. 奥数题及答案解析 4 甲、乙二人按顺时针方向沿着圆形跑道练习跑步,已知甲跑一圈要12分钟,乙跑一圈要15分钟,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分钟甲追上乙? 答案与解析: 可以假设圆形跑道的长为120米,那么甲的速度为120÷12=10(米/分),乙的速度为120÷15=8(米/分),如果他们分别从圆形跑道直径的两端同时出发,他们在圆形跑道上的距离为60米,甲追上乙需要的时间为60÷(10—8)=30(分钟)。 另解: 因为乙跑一圈要15分钟,所以把15分钟看作一个单位进行考虑,在15分钟内,乙跑了一圈,甲跑了5/4圈,甲比乙多跑了1/4圈,而开始时甲、乙两人相距半圈,所以需要2个15分钟,也就是30分钟后甲可以追上乙。 奥数题及答案解析 5 0,1,2,3,6,7,14,15,30,___,___,___。 上面这个数列是小明按照一定的规律写下来的,他第一次写出0,1,然后第二次写出2,3,第三次接着写6,7,第四次又接着写14,15,以此类推。那么这列数的最后3项的和应是多少? 答案:156。 详解:将小明每次写出的两个数归为同一组,这样整个数列分成了6组,前四组分别为(0,1)、(2,3)、(6,7)、(14,15)。容易看出,每组中的两个数总是相差1,而1×2=2,3×2=6,7×2=14,即任何相邻两组之间,后面一组的第一个数总是前面一组第二个数的2倍。因此下面出现的一组数的第一个应该为15×2=30,第二个应为30+1=31;接着出现的一组数第一个应为31×2=62,第二个为62+1=63。因而最后三项分别为31、62、63,它们的和为31+62+63=156。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。