标题 | 《三角形内角和》的教学设计 |
范文 | 《三角形内角和》的教学设计(精选10篇) 作为一位杰出的教职工,通常会被要求编写教学设计,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?下面是小编为大家收集的《三角形内角和》的教学设计(精选10篇),欢迎大家分享。 《三角形内角和》的教学设计 篇1【教学内容】 《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》 【教学目标】 1、使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。 2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。 3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。 【教学重点】 使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。 【教学难点】 通过多种方法验证三角形的内角和是180 。 【教学准备】 课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。 【教学过程】 一、激趣导入,提炼学习方法 1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?” 2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。 3、选择工具,总结方法。 让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。 师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。 4、导入新课。 图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和) 二、动手操作,探索交流新知 1、分组活动,探索新知 根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。 量一量组同学发给以下几种学具: 折一折组同学发给上面的三角形一组。 拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。 在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。 2、多方互动,交流新知 师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。 (1)首先要求学生说一说你们小组是怎样进行探究的。 (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。) (3)请学生说说通过探究活动你们组得出的结论是什么。 师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢? 引导这一组从探究的过程和结论与同学、老师交流。 师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。 同样引导这一组从探究的过程和结论与同学、老师交流。 3、思想碰撞,夯实新知 师:三个徒弟你们能说说谁的方法最好吗? 学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。 师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。 四、走进生活,提升运用能力 1、出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度? 2、给你三根木条,能做出一个有两个直角的三角形吗? 五、总结 师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗? 六、拓展新知,课外延伸 师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。 大屏幕出示: 能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗? 《三角形内角和》的教学设计 篇2一、教学目标 1、知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。 2、能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。 3、情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。 二、教学过程 (一)创设情境,导入新课 1、师:我们已经认识了三角形,你知道哪些关于三角形的知识? (学生畅所欲言。) 2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧! 师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”, 3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和) (二)自主探究,发现规律 1、认识什么是三角形的内角和。 师:你知道什么是三角形的内角和吗? 通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。 2、探究三角形内角和的特点。 ①让学生想一想、说一说怎样才能知道三角形的内角和? 学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行) ②小组合作。 通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。 引导学生推测出三角形的内角和可能都是180°。 3、验证推测。 让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。 (小组合作验证,教师参与其中。) 4、全班交流,共同发现规律。 当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。 学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。) 5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。) (三)巩固练习,拓展应用 根据发现的三角形的新知识来解决问题。 1、完成“试一试” 让学生独立完成后,集体交流。 2、游戏:选度数,组三角形。 请选出三个角的度数来组成一个三角形。 150°10°15°18°20°32° 35°50°52°54°56°58° 130°70°72°75°60° 学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。 3、“想想做做”第1题 生独立完成,集体订正,并说说解题方法。 4、“想想做做”第2题 提问:为什么两个三角形拼成一个三角形后,内角和还是180度? 5、“想想做做”第3题 生动手折折看,填空。 提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗? 6、“想想做做”第5题 生独立完成,说说不同的解题方法。 7、“想想做做”第6题 学生说说自己的想法。 8、思考题 教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导 出四边形的内角和公式吗? (四)课堂总结 本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。 三教后反思: “三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为: 1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。 2、已知三角形两个角的度数,会求出第三个角的度数。 本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。 (一)创设情景,激发兴趣 俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。 (二)给学生空间,让他们自主探究 “给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。 (三)以学定教,注重教学的有效性 新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。 在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。< 《三角形内角和》的教学设计 篇3教学目标: 1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。 2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。 3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。 教学重点: 让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。 教学难点: 通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。" 教师准备: 4组学具、课件 学生准备: 量角器、练习本 教学过程: 一、兴趣导入,揭示课题 1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?" (生出示三角形并汇报各类三角形及特点) 2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。) 3、我们来帮帮它们好吗? 4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。 你能标出三角形的三个角吗?(生快速标好) 数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1) "同学们,用什么方法能知道三角形的内角和?" 二、猜想验证,探究规律 (动手操作,探究新知) 1.量角求和法证明: 先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人 量,一人记录,一人计算,看哪一小组完成的好? (1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。 (2)指名汇报各组度量和计算内角和的结果。 (3)观察:从大家量、算的结果中,你发现什么? 归纳:大家算出的三角形内角和都等于或接近180°。 (5)思考、讨论: 通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢? 大家讨论讨论。 现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论? 看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。 看老师最终把三个角拼成了一个什么角?平角。是多少角? "180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180 度的平角就可以验证这个结论,对吗?"(课件3) 现在,我们可验证三角形的内角和是(180度)? 2、那么对任意三角形都是这个结论?请看大屏幕。 演示锐角三角形折角。 (三个顶点重合后是一个平角,折好后是一个长方形。) 你们想不想去试一试。 1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生) 2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序) a、验证直角三角形的内角和 折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论? 引导生归纳出:直角三角形的内角和是180° 折法2 我们还可以得出什么结论? 引导生归纳出:直角三角形中两个锐角的和是90°。 (即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可) b、验证锐角、钝角三角形的内角和。 归纳:锐角、钝角三角形的内角和也是180°。 放手发动学生独立完成 ,逐一种类汇报 师给予鼓励 三、总结规律 刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论? (三角形的内角和是180°。) (教师板书:三角形的内角和是180°学生齐读一遍。) 为什么用测量计算的方法不能得到统一的结果呢? (量的不准。有的量角器有误差。) 老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应 四、应用新知,知识升华。 (让学生体验成功的喜悦) 现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢? (课件5……) 在一个三角形中,有没有可能有两个钝角呢? (不可能。) 追问:为什么? (因为两个锐角和已经超过了180°。) 有两个直角的一个三角形 (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。) 问:那有没有可能有两个锐角呢? (有,在一个三角形中最少有两个内角是锐角。) 1、 看图求出未知角的度数。(知识的直接运用,数学信息很浅显) 2、做一做: 在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数、 3、27页第3题(数学信息较为隐藏和生活中的实际问题) 4.思考题、 五、总结 今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。 板书设计: 三角形内角和 量一量 拼一拼 折一折 三角形内角和是180° 《三角形内角和》的教学设计 篇4【教材分析】 《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。 【学生分析】 经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1、知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。 【学习目标】 知识目标:掌握三角形内角和是180度这一规律,并能实际应用。 能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。 情感目标: 让学生体会几何图形内在的结构美。 【教学过程】 一、 情景激趣,质疑猜想。 播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。 钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。” 师:想一想,什么是三角形的三个内角的和。 生:三角形的三个内角的度数和。 师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对? 学生进行猜想,自由发言。 (设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。) 二、自主探究,验证猜想 师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗? 生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。 生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。 生3:我把三角形的三个角撕下来,拼一拼是否180°。 生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。 …… 师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。) 学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。 (设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。) 三、交流评价,归纳结论。 学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。 实验报告单 实验名称 三角形内角和 实验目的 探究三角形内角和是多少度。 实验材料 尺子 剪刀 量角器 锐角三角形纸片 直角三角形纸片 钝角三角形纸片 我的方法 我的发现 我的表现 自评 互评 学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。 师生共同归纳,得出结论: 三角形内角和等于180° (设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。) 四、分层练习,巩固创新。 ①课件出示: 师:这个三角形是什么三角形?知道几个内角的度数? 生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。 师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。 学生做完后反馈讲评时让学生说说自己的方法。 生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。 ∠A=180°-30°-90°=60°。 生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。 ②学生完成完成P29的第一题。 引导学生按照前面的方法独立完成,教师巡视,集体订正。 ③猜一猜三角形的另外两个角可能各是多少度。 同桌同学互相说一说。(答案不唯一) ④小组操作探究活动。 让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。 方 法 四边形内角和 用量角器量出每个内角的'度数,并相加。 把四边形四个角剪下来,拼在一起。 把四边形分为两个三角形。 填表后让学生想一想、互相说一说,四边形内角和是多少度? (设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。) 《三角形内角和》的教学设计 篇5【教学目标】 1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。 2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。 3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。 【教学重点】 探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。 【教学难点】 对不同探究方法的指导和学生对规律的灵活应用。 【教具准备】 课件、表格、学生准备不同类型的三角形各一个,量角器。 【教学过程】 一、激趣引入。 1、猜谜语 师:同学们喜欢猜谜语吗? 生:喜欢。 师:那么,下面老师给大家出个谜语。请听谜面: 形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么? 生:三角形 2、介绍三角形按角的分类 师:真聪明!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类 师分别出示卡片贴于黑板。 3、激发学生探知心里 师:大家会不会画三角形啊? 生:会 师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧! 生:试着画 师:画出来没有? 生:没有 师:画不出来了,是吗? 生:是 师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题) 二、探究新知。 1、认识三角形的内角 看看这三个字,说说看,什么是三角形的内角? 生:就是三角形里面的角。 师:三角形有几个内角啊? 生:3个。 师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出) 师:你知道什么是三角形“内角和”吗? 生:三角形里面的角加起来的度数。 2、研究特殊三角形的内角和 师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度? 生:算一算:90°+60°+30°=180° 90°+45°+45°=180° 师:180°也是我们学习过的什么角? 生:平角 师:从刚才两个三角形的内角和的计算中,你发现了什么? 3、研究一般三角形的内角和 师:猜一猜,其它三角形的内角和是多少度呢? 生: 4、操作、验证 师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗? 要求: (1)每4人为一个小组。 (2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务? (3)验证的方法不只一种,同学们要多动动脑子。 师:好,开始活动! 师:巡视指导 师:好!请一组汇报测量结果。 生:通过测量我们发现每个三角形的三个内角和都在180度左右。 师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。 生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。 师:好!非常好! 师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼) 生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。 师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示) 现在老师问同学们,三角形的内角和是多少? 生:180度。 师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。 三、解决疑问 师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗? 生:没有 师:那你能用这节课的知识解释一下为什么画不出来吗? 生:两个直角是180度,没有第三个角了。 师:如果想画出有两个角是钝角的三角形你能画出来吗? 生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。 师:学会了知识,我们就要懂得去运用。 四、巩固提高。 1、填空。 (1)三角形的内角和是( )度。 (2)一个三角形的两个内角分别是80°和75°,它的另一个角是( )。 2、求下面各角的度数。 (1)∠1=27° ∠2=53° ∠3=( )这是一个( )三角形。 (2)∠1=70° ∠2=50° ∠3=( )这是一个( )三角形。 3、判断每组中的三个角是不是同一个三角形中的三个内角。 (1)80° 95° 5°( ) (2)60° 70° 90°( ) (3)30° 40° 50°( ) 4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示) 对学生进行思品教育。 5、思考延伸。 根据三角形内角和是180度,算一算四边形和八边形的内角和是多少? 6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52° 五、总结。 《三角形内角和》的教学设计 篇6学情分析: 学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。 教学目标: 1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。 2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。 3、情感态度:使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。 教学重点: 探索发现和验证三角形的内角和是180度。 教学难点: 对不同探究方法的指导和学生对规律的灵活应用。 教具准备: 教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表 学生准备:量角器、直尺、剪刀 教学过程: 一、激趣导入 多媒体展示三角形 出示谜语:形状似座山,稳定性能坚 三竿首尾连,学问不简单(打一图形名称) (预设:三角形) 师:谁能介绍介绍三角形? (生1:三角形有三条边、三个顶点、三个角。 生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。) 师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形) 师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。 师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。 师:今天我们就来研究一下三角形的内角和。 二、学习目标 1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。 2、能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。 3、培养动手动脑及分析推理能力。 三、自主学习(展示量角法) 1.理解三角形的内角、内角和 (1)板书展示三角形 师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。) 师:你能过来指指吗?同意吗?内角有几个? 师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。 师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗? (2)三角形的内角和 师:什么是三角形的内角和? (三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3) 师:就是把∠1+∠2+∠3加起来。 师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量) 师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟) 学生测量(1分40)汇报结果(5人)。 教师填写测量汇报单。 师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右) 四、合作探究 师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法) 1、操作验证探索三角形内角和的规律(6分钟) (1)操作验证:小组合作 拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀 (老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。) 2、学生汇报 (1)转化法: 生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。 师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。 (2)折拼法 生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。 师:他们是用折拼法验证三角形的内角和是180度(动手能力真强) (3)剪拼法 生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。) 标记上之后再拼一拼,可见标记的方法很科学。(20分钟) 3、教师演示 师:我们再来感受一下怎么验证三角形的内角和的? 师:这是什么三角形?把他折一折。 师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度) 师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。 师:注意观察。 师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。 师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟) 4、演示任意一个三角形的内角和都是180度。 出示一些三角形,让学生指出内角和。 师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。) 师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差) 师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟) 师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180° 师:你们能用今天的发现做一些练习吗? 五、测评反馈 1、判断。 (1)直角三角形的两个锐角的和是90°。 (2)一个等腰三角形的底角可能是钝角。 (3)三角形的内角和都是180°,与三角形的大小无关。 4、剪一剪。 把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度? 六、课后作业 69页第1题、第3题。 七、板书设计 《三角形内角和》的教学设计 篇7教学目标: 1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。 2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。 教学重点: 理解并掌握三角形的内角和是180°。 教学难点: 验证所有三角形的内角之和都是180°。 教具准备: 多媒体课件。 学具准备: 量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形) 教学过程: 一、导入 师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。 师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗? 师:还有一个关键字“和”,什么是三角形的内角和? 师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么? 师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。这才真了不起呢。能证明吗?你想怎么证明阿? 生:量一量的方法。 师:光量就知道了?还要算一算。 师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。小组长把计算的过程记录下来。开始吧。 验证:量角、求和 小组汇报 生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。 生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。 生三:我们组量的是钝角三角形,三个角分别是120度、40度、20度,钝角三角形的内角和是180度。 师:从刚才的交流中,你发现了什么? 生:不管是锐角三角形、直角三角形,还是钝角三角形,内角和都是180度。 师:下面同学测量得出180度的请你举手,有没有不是180度的?为什么有不同的答案呢?反思一下。我们在测量的时候容易出现误差,得出的结论就难以让人信服。看来似乎用量的方法还不能充分证明。(划问号) 师:还敢接受更大挑战吗?把量角器和你的工具都收起来,只借助这张三角形纸片证明出三角形的内角和是180度,你有办法吗?或许下面的同学还有别的方法,下面就请同学们互相交流交流,动手试一试吧! 师:这种方法怎么样?(鼓掌)老师感到非常的惊喜,你看他们没有破坏三角形,就这样轻轻的一折,就解决了问题,真是很巧妙。 师:你们小组每个同学都动脑筋了,谢谢你们。 师:还有那个小组用的这种方法?你们也非常的聪明。还有别的方法吗? 师:其实大家能用3种方法证明已经很不简单了,现在我们就能很自信的说三角形的内角和是180度。 师:其实对我来说重要的不是知识的结论,让老师感动的是你们那种渴望求知,敢于探索的精神。更让老师高兴的是你们积极思考所得出的创造性的方法。现在我们再来一块回顾一下。 师:这几种方法都足以说明三角形的内角和是180度。(结论) 师:刚才同学们发挥自己的聪明才智,想了很多方法来证明。王老师也有一种方法能证明。老师这里有一个活动角,借助课本的一边就构成了一个三角形,请你睁大眼睛仔细观察,你发现了什么? 请你再仔细观察,你发现了什么?其实两个底角减少的度数,正是顶角增大的度数。如果我继续按下去你觉得会怎样?我们来看看是不是这样,三角形呢?两个底角呢?刚才三角形的动态过程是不是也能证明三角形的内角和是180度? 师:看来只要大家肯动脑筋,面对同一问题就会有不同的解决方法。 师:现在我们知道了“三角形的内角和是180度”,能不能用这个知识来解决一些问题啊? 生:能。 二、迁移和应用 (一)点将台: 下面哪三个角是同一个三角形的内角? (1)30 °、60 °、45 °、90 ° (2)52 °、46 °、54 °、80 ° (3)45 °、46 °、90 °、45 ° (二)我会算 1、已知∠1,∠2,∠3是三角形的三个内角。 (1)∠1=38° ∠2=49°求∠3 (2)∠2=65° ∠3=73° 求∠1 2、已知∠1和∠2是直角三角形中的两个锐角 (1)∠1=50°求∠2 (2)∠2=48°求∠1 3、已知等腰三角形的一个底角是70°,它的顶角是多少度? (三)。变变变! (1)一个三角形中, ∠1 、∠2、∠3。 (2)如果把∠3剪掉,变成了几边形?它的内角和变成多少度呢? (3)如果再把∠2剪掉,剩下图形的内角和是多少度呢? 三、全课小结 师:通过一节课的探索,你有什么收获? 生答(略) 我的几点认识: 结合《三角形的内角和》这节课,我对空间与图形这一部分内容,简单的谈一下自己的认识。 空间与图形这一部分内容,可以用这几个字来概括:难理解,难受,难掌握。在本节课的教学中,三角形的内角和概念比较抽象,学生比较难理解。尤其是让学生探究三角形的内角和是180度,对学生来说更是难上加难。如果光凭在头脑中想,不动手实践,对于三角形的内角和,学生也只能机械记忆是180度。那如何更好的让学生掌握和接受呢?针对这些特点我采用了一下几点做法: 1、根据学生的知识特点和生活经验,在原有基础上创造性的使用教材。 在教学本节课的内容时,学生在自己的日常生活或大部分都已经知道三角形的内角和是180。因材在这样的情况下,我创造性的使用教材。不是让学生通过自己动手操作之后才发现三角形的内角和是180,而是直接把问题抛给学生,你们知道三角形的内角和是多少度吗? 你们怎么知道的?能自己证明么?这样学生从被动学习者的角色, 立刻转入主动学习者的角色之中。这样既能使学生很好的掌握知识,又能使学生激发兴趣,提高积极性。 2、让学生在小组交流中进行思维的碰撞,在动手操作的实践过程中得到知识情感价值的升华。 在探究的过程中,我们采用了小组合作学习方式,这样既能给学生提供交流的空间,又能在短时间内有效学习。学生先交流方法,商定出可行的办法和方略,然后合作进行实践。学生会为了一个问题争的面红耳赤,在这个过程中我们惊喜的看到生在交流和动手操作过程中得到了提高。通过自己的实践证明,学生发现三角形的内角和的确是180度。 总之,在教学空间与图形的内容时,一定要让学生看到“图形",让学生想象"空间”。 《三角形内角和》的教学设计 篇8教学内容: 教材第67页例6、“做一做”及教材第69页练习十六第1~3题。 教学目标: 1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。 2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。 3、培养学生动手动脑及分析推理能力。 重点难点: 掌握三角形的内角和是180°。 教学准备: 三角形卡片、量角器、直尺。 导学过程 一、复习 1、什么是平角?平角是多少度? 2、计算角的度数。 3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形) 二、新知 (设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养) 1、读学卡的学习目标、任务目标,做到心里有数。 2、揭题:课件演示什么是三角形的内角和。 3、猜想:三角形的内角和是多少度。 4、验证: (1)初证:用一副三角板说明直角三角形的内角和是180°。 (2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。 (3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视) (4)汇报结论(清楚明白的给小组加优秀10分) 5、结论:修改板书,把“?”去掉,写“是”。 6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示) 7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。) 三、知识运用(课件出示练习题,生解答) 1、填空 (1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( )、 (2)一个直角三角形的一个锐角是50,则另一个锐角是( )。 (3)等边三角形的3个内角都是( )。 (4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。 (5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。 2、判断 (1)一个三角形中最多有两个直角。 ( ) (2)锐角三角形任意两个内角的和大于90。 ( ) (3)有一个角是60的等腰三角形不一定是等边三角形。 ( ) (4)三角形任意两个内角的和都大于第三个内角。 ( ) (5)直角三角形中的两个锐角的和等于90。 ( ) 四、拓展探究 根据所学的知识,你能想办法求出四边形、五边形的内角和吗? 1、小组讨论。 2、汇报结果。 3、课件提示帮助理解。 五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。 六、谈谈自己本节课的收获。 教学反思 今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。 任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。 如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。 如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。 本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。 给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。 前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。 总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。 《三角形内角和》的教学设计 篇9【设计理念】 新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。 【教材内容】 新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。 【教材分析】 三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。 【学情分析】 1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。 2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。 【教学目标】 1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。 2。在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。 3。在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。 【教学重点】 探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。 【教学难点】 验证“三角形的内角和是180°”。 【教(学)具准备】 多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。 【教学步骤】 一、复习旧知 引出课题 1、你已经知道有关三角形的哪些知识? 2、出示课题:三角形的内角和 设计意图:也自然导入新课。 二、提出问题 引发猜想 1、提出问题:看到这个课题,你有什么问题想问的? 预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思? (3)三角形的内角一共是多少度? 2、引发猜想 猜一猜:三角形的内角和是多少度?你是怎么猜的? 设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。 三、操作验证 形成结论 1、交流验证方法: (1)用什么方法证明三角形的内角和是180度呢? 预设: ①量算法 ②剪拼法 ③折拼法等 (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效? 2、动手验证 3、全班汇报交流 4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。 5、方法拓展 推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。 6、形成结论:任意三角形的内角和是180 °。 设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。 四、应用结论 解决问题 1、巩固新知:想一想,算一算。 2、解决问题:等腰三角形风筝的顶角是多少度? 3、辨析训练,完善结论。 五、课堂总结,归纳研究方法 今天这节课你学到了哪些知识?你是怎样得到这些知识的? 六、课后延伸:用今天所学的方法继续研究四边形的内角和。 七、板书设计: 三角形的内角和 猜测: 三角形的内角和是180°? 验证: 量 拼 结论: 任意三角形的内角和是180° 《三角形内角和》的教学设计 篇10【教材内容】 北京市义务教育课程改革实验教材(北京版)第九册数学 【教材分析】 《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。 【学生分析】 在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。 【教学目标】 1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。 2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。 3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。 【教学重点】 让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。 【教学难点】 能利用学到的知识进行合情的推理。 【教具学具准备】 课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸 【教学过程】 一、学具三角板,引入新课 1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形) 2、顾名思义一个三角形都有几个角呀?(三个) 3、认识内角 (1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢? (2)这个三角形内有几个内角?(三个)这个呢?(三个) (设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备) 二、动手操作,探索新知 (一)直角三角形内角和 ⅰ、特殊直角三角形内角和 1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。 2、观察这两个三角形的度数,你有什么发现? 生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形) 生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样? (课件):(1)90°+60°+30°=180°) 那么另一个三角板的三个内角的总度数是多少? (生回答,师课件:(2)90°+45°+45°=180) 3、你指的哪是180度?(生:这三个内角合起来是180度) 4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和) 5、这个直角三角形的内角和是多少度?另一个呢? 6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。 (师出示一个平角)问:平角是什么样的? 7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。 ⅱ、一般直角三角形内角和 1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。 2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。 (1)小组活动 (2)汇报 哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示) 三角形的种类 验证方法 验证结果 “量一量”的方法: 板书:有一点误差的度数 “剪一剪”的方法: 我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示) 现在我们也用这种方法试一试,看能不能拼成平角?(小组实验) 你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度? 还有其他方法吗? “折一折”的方法: 预设:①生:我是折的。师:怎样折的?你能给大家演示吗? 学生演示(课件:折的过程) ②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折) 推理: 你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程) 这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理) 3、小结 (1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。 (2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形) (设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。) (二)、锐角三角形、钝角三角形的内角和 1、请你们任意画一个钝角三角形,一个锐角三角形 2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的? 3、学生模仿老师操作说理 4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。 师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。 (设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。) 三、巩固新知,拓展应用 我们就用三角形的这一特性来解决一些问题 1、两个三角形拼成大三角形 (1)每个三角形的内角和都是少度? (2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢 2、一个三角形去掉一部分 (1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度? 再剪去一个三角形呢?(课件演示) 你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。 (2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形) 你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗? (3)如果五边形,你还能求出他的度数吗? (设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。) 四、总结评价、延伸知识 通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢? 师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。 (设计意图:帮助学生梳理本节课的知识脉络。) |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。