网站首页  词典首页

请输入您要查询的范文:

 

标题 《商的变化规律》教学设计
范文

《商的变化规律》教学设计范文(精选10篇)

作为一名老师,编写教学设计是必不可少的,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么大家知道规范的教学设计是怎么写的吗?下面是小编收集整理的《商的变化规律》教学设计范文,希望对大家有所帮助。

《商的变化规律》教学设计 篇1

教学内容:教材第93页例5

教学目标:

1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。

2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。

3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。

教学重点:发现规律,掌握规律

教学难点:利用商的变化规律进行简便计算。

教学准备:课件,实物投影

教学过程:

一、谈话导入,揭示新课

师:同学们,来到阶梯教室,能和四(1)班的同学们在阶梯教室上课,我非常高兴,因为我班学生个个都是最棒的,上课认真,思维敏捷,发言积极。这节课曾老师将带大家一起探索数学的奥秘,有没有信心把它学好?

师:先来一场热身赛,快速抢答。预备——开始。

200÷2= 200÷20= 16÷8= 200÷40= 160÷8= 320÷8= 14÷2=

560÷80= 280÷40=

师:同学们算得既对又快,注意观察这些算式,你能把它们分类吗?

师:依据是什么?(按被除数不变、除数不变、商不变。)

二、探究体验,建构新知

(一)被除数不变时,商的变化规律。

师:我们先来观察第一组算式,你发现了什么变了,什么没变?(被除数不变,除数和商有变化。)

师:从上往下看,除数和商有什么变化?(被除数不变,除数扩大,商反而缩小。)

从下往上看,除数和商有什么变化?(被除数不变,除数缩小,商反而扩大。)

师总结:被除数不变,除数扩大(或缩小),商反而缩小(扩大)。

师:继续观察除数和商的扩大、缩小有什么规律呢?

②式与①④比(除数乘10扩大了,商反而除以10缩小了。)

③式与②式比(除数乘2扩大了,商反而除以2缩小了。)

小结:被除数不变,除数乘几,商反而除以几。

②式与③式比(除数除以2缩小了,商反而乘2扩大了。)

① 式与②式比(除数除以10缩小了,商反而乘10扩大了。)

小结:被除数不变,除数除以几,商反而乘几。

师:谁能完整地说一说,当被除数不变,商的变化规律?

【被除数不变,除数乘几(或除以几),商反而除以几(或乘几)】

师实物讲解,平台展示。

练习:

11 21

231÷ 33 = 7

77 3

(二)除数不变时,商的变化规律。

课件出示:

1、什么变了,什么没变?

2、商随着谁的变化而变化?怎么变的?

3、它们的变化有规律吗?

讨论、交流、汇报结论:

除数不变,被除数乘几(或除几),商也乘几(或除几)。

练习:

132 11

264÷12 = 22

1320 110

(三)商的不变规律。

师:刚才同学们通过计算、观察、比较、讨论、总结出了商的变化规律。你们再想一想、猜一猜如果要商不变,被除数、除数会发生什么变化了?

师:同学们说对了吗?同学们可以带着以下问题通过计算、观察、比较、讨论等方法自己研究研究。

1、什么变了,什么没变?

2、商随着谁的变化而变化?怎么变的?

3、它们的变化有规律吗?

汇报交流。

师:被除数、除数同时乘(或除以)相同的数,这个数是“0”可以吗?

师:在这一条规律中要注意些什么?(同时、相同的数)

师:谁会完整地说一说商不变规律呢?

被除数和除数同时乘(或除以)相同地数,(0除外),商不变。大家一起读一读。师:通过大家认真的观察、比较,同学们发现了商随被除数、除数的变化而发生变化的规律,这就是今天学习的内容。(板书课题:商的变化规律)

4、练习

72÷9=8

720÷90=

7200÷900=

三、应用练习,拓展提升

1、看谁算得又对又快?

6300÷700= 8100÷300= 2800÷20=

2、谁是它的朋友。(用线段连接)

320÷80 180÷60

1800÷600 160÷40

360÷60 3200÷800

3、思考题,填空。

(1)120÷30=(120x3)÷(30x□)

(2)60÷12=(60÷2)÷(12○2)

(3)200÷40=(200x□)÷(40○5)

(4)150÷50=(150○□)÷(50○□)

四、课堂小结

1、这节课你有什么收获?

2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?

《商的变化规律》教学设计 篇2

我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。

一、教材分析

“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。

二、教学目标、重点难点

本节课的教学目标是:

1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。

2、培养学生初步抽象、概括能力。

3、培养学生善于观察、勤于思考、勇于探索的良好习惯。

教学重难点:通过观察、比较、探讨发现商的变化规律。

三、教法学法

本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。

而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。

四、教学设计

一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)

的变化而变化的规律,并且能应用这些规律解决一些简单的问题。

教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。

在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。

在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。

《商的变化规律》教学设计 篇3

教学目标:

1、通过计算、观察、比较、探索,引导学生发现、概括商的变化规律,并能理解运用规律进行计算。

2、引导学生经历“计算—猜想—观察—探索—发现—验证—应用”的过程。培养学生初步的观察分析和抽象概括能力。

3、培养学生善于观察,勤于思考,勇于探索的良好习惯,初步体验应用科学的方法进行数学研究的过程。

教学重难点:

1、抽象并准确描述规律;

2、运用规律进行被除数和除数末尾都有零的简便计算。

教学准备:

课件

教学过程:

一、创设情境,提出问题

课件演示:“张老师买书”的图片,分别引出两组算式。

师:张老师花同样的钱,买到的书的数量却少了,这里面隐藏着什么样的数学规律呢?让学生说一说。

师:这节课我们就一起来研究“商的变化规律”。揭示课题:商的变化规律

【设计意图:从现实的情境中抽象出数学问题,既可以激发学生探索的积极性,同时也为学生的学习提供认知背景和停靠点,促进学生理解和思维发展。】

二、观察比较探索规律

1、探索“被除数不变,商随除数变化而变化”的规律

师:认真观察一组算式中被除数、除数和商各是怎么变化的?(引导学生分别从上往下观察和从下往上观察)

让学生和同桌同学说说。

根据学生的表述,概括出“被除数不变,除数扩大(或缩小),商反而缩小(或扩大)。

2、探索“除数不变,商随被除数的变化而变化”的规律课件演示,引出第二组算式

师:用刚才的方法认真观察,你能发现这里面除数、被除数和商有什么变化规律?要求学生认真观察、独立思考,尽可能完整表述变化规律“除数不变,被除数扩大(或缩小),商也扩大(或缩小)。”

3、探索“商不变的规律”

师:刚才同学们通过计算、观察、比较分别发现了被除数不变和除数不变两种情况下商的变化规律,猜一猜,如果商不变,被除数和除数会发生怎样的变化?

让学生说出他们的想法,然后提供探索材料让他们自主探索。

(1)明确探索要求,有序进行探究

阅读探索要求,提醒学生严格按要求有顺序地进行思考探索。

(2)先独立思考,再交流探讨

在学生认真计算,充分观察比较的基础上与小组内的成员交流看法,尝试描述规律。

(3)汇报探索结果

各小组展示汇报探索的成果。注意根据各小组探索的程度按“探索过程的展示——初步成果的展示——相对规范化描述”的顺序进行展示,逐步归纳出“商不变的规律”。

注意提醒学生“0”的特殊性,完整描述规律。

(4)验证规律,体验探索过程的严谨性

师:写出一组商是5的算式,来验证这个规律的正确性,并加以解释说明。

(5)引导学生进一步解读“商不变的规律”,指出关键词并读一读。

【设计意图:作为本节课的重点内容,商不变的规律的探索发现教师采用了提供材料、自主探索,独立思考、交流讨论的学习方式,让学生有更大的探索空间。学生通过计算—观察—比较—交流—汇报—归纳—验证得出规律,体验了探究过程的科学性和严谨性。与前两条规律的发现在学法上具有层次感。】

三、应用规律,巩固提高

1、课件出示“减肥瘦身”的有趣图片,你能有商不变的规律给这些算式减减肥吗?120÷30=560÷80=480÷40= 6300÷700=3200÷400=8100÷300=

2、数学诊所:通过“数学诊所”的情境,引导学生发现问题,进一步理解规律所表达的含义。

四、小结反思,评价升华

1、本节课我们发现了哪些规律?

2、在探索发现规律的过程中应用了哪些方法?3你对自己的表现满意吗?

五、拓展延伸:

师:老师给大家讲个故事:(财主发工钱的故事)思考:170除以60商2余5对吗?为什么?

《商的变化规律》教学设计 篇4

一、说教材

(一)教学内容

我说课的内容是人教版小学数学四年级上册第五单元除数是两位数的除法中的例5“商的变化规律”。

(二)教材分析

这是一节新授课,主要学习商的三个变化规律:即商随除数的变化而变化的规律、商随被除数的变化而变化的规律和商不变的规律。“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等知识的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。本堂课利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好的学习习惯。基于对教材的以上认识,依据数学课程标准,确定如下教学目标。

(三)教学目标

知识与技能目标:

1、结合具体情境,通过计算、观察、比较、探索,引导学生发现商的变化规律,并能运用规律解决问题。

2、培养学生初步的观察分析和抽象概括能力。

过程与方法目标:引导学生经历“计算—观察—比较—探索—应用”的过程。

情感目标:培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的兴趣

教学重点:理解并掌握商的变化规律。

教学难点:运用规律,进行被除数和除数末尾都有零的简便计算,明晰算理。

(四)教学设想:

1、充分发挥学生主体作用,自主探究

通过这一节课的学习,使学生掌握商的三个变化规律,也为学生今后的数学学习打下了坚实的基础。通过课堂教学的实施,引导学生积极参与到探究规律、总结规律的过程中,让学生在观察、思考、尝试、交流的过程中,实现师生互动、生生交流,促进学生主动参与知识的形成过程。

2、紧抓学生知识的生长点,将学生知识、能力有效延伸

本课通过研究商不变的规律,在学生初步感知到被除数、除数、商之间存在着变化的规律基础上,抓住学生这个知识的生长点,从单纯的算式计算延伸到算式内部、算式之间的联系上,延伸学生的知识范围。进而使学生通过本节课研究,经历数学规律产生或发现的一般过程。

二、说教法学法

本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。

而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。

三、说教学设计:

在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。

我把整个教学过程分为四大环节进行的。

第一环节:创设情境,导入新课。

在这一环节,我设计的是通过小精灵聪聪给大家带来两组口算题,要同学们同桌两人一组进行口算比赛,先算完又全对的为赢。我认为这样设计有利于吸引孩子注意力,激发学生学习兴趣。

第二环节:自主探索,发现规律

(一)探索“商随除数(被除数)的变化而变化的规律”。

(课件出示例题)在学生汇报结果之后,引导学生仔细观察算式并思考:

(1)每一组题中的什么数变了?

(2)什么数没有变?

(3)除数(或被除数)和商的变化有什么特点?(被除数不变,商随除数的变化而变化的)

根据回答边引导观察第一组算式,提问:除数是怎样变化的?商是怎样随着除数的变化而变化的?分别从上往下、再从下往上看第一个算式和第二个算式比较、第二个算式和第三个算式比较,从而发现:被除数不变,除数乘几扩大,商除以几变小;除数除以几变小,商乘几扩大。

这是本节课要学习的第一个规律:被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,所以第二个规律的学习我放手让学生自学。

认真观察第二组算式,看看你能发现什么?边观察边思考,然后和小组同学说一说:

(1)每一组题中的什么数变了?

(2)什么数没有变?

(3)除数(或被除数)和商的变化有什么特点?

在全班汇报自学情况,然后引导小结第二个规律:除数不变,被除数乘几,商也乘几;被除数除以几,商也除以几。

通过对刚才这两组算式的观察、比较,我们发现商的变化和被除数、除数有密切的关系。这就是这节课我们要研究的新知识:商的变化规律。板书课题。(商的变化规律)

(二)小组合作,探索“商不变的规律”。

在这一环节主要探讨第三个规律:被除数和除数同时扩大(或缩小)相同的倍数(零除外)商不变。这是本节课的教学重点,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。

1、(课件出示)例题的表格,

说明要求:先填表,再回答问题,然后和小组同学交流:

(1)表中什么数有变化?什么数没有变化?

(2)被除数、除数和商的变化有什么规律?

2、在小组交流的基础上全班交流时引导学生分别从左往右、从右往左每两栏进行比较从而发现并概括出规律:被除数和除数同时扩大(或缩小)相同的倍数(零除外)商不变。

第三环节:应用反馈、运用规律

这一环节我采取由易到难的形式呈现,首先完成练习十七的第四题,直接运用本节课所学的规律;加深对知识的巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。第二完成第五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。从而达到知识的升华。

第四环节:课堂总结、拓展延伸。

先启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。拓展延伸练习的难度在巩固练习的基础上又加大了一点,既锻炼学生的思维能力,又加深了对商不变规律的进一步理解。

《商的变化规律》教学设计 篇5

教学目标:

1、通过观察、比较、探索,使学生发现商随出数(或被除数)的变化而变化的'规律

2、增强学生抽象、概括能力

3、养成善于观察勤于思考,勇于探索的良好习惯

4、观察、比较、探索商不变的规律

教学难点:

通过观察、比较、探索商不变的规律

教学过程:

1、 导入

在上课之前,我们要先来做个游戏,题目是抢答,在游戏开始之前,老师要说规则,规则很简单就是要等老师说开始之后举手抢答,不可以乱喊乱叫。现在老师开始出题了,同学们看仔细了哦。

板书:80÷4= 150÷15=

80÷8= 300 ÷15=

80÷16= 450÷15 =

同学们真棒,这么快就抢答完毕了,真是抢答高手!

2、 抢答结束,现在老师请同学们仔细观察左边的一组算式,其中的被除数、除数、商都有什么变化特点呢?同桌讨论下,一会儿老师要请同学们来说说你们的发现。

刚刚有位同学说除数变了,被除数不变,商也变了,谁还有不同的发现呢?生没有发现,现在老师要问问大家,它们是怎样变的呢?生如果说被除数不变,除数扩大几倍,商反而缩小几倍,刚刚你是从上往下看这组算式,那如果从下往上看,你能发现什么?谁能用自己的话完整的说一说?

纠正错误,出示,被除数不变,除数扩大(缩小)几倍,商反而缩小(扩大)几倍。你真厉害真会概括。

现在请同学们看看右边的这组算式,你们能发现什么呢?可以采用刚刚的观察方法来说一说。还可以用刚刚概括地方法说一说规律。

除数不变,被除数扩大(缩小)几倍,商也扩大缩小几倍。

同学真会观察发现,这么快就找到了商的变化规律,除数和被除数变化时,商一定变化吗?怎么样商才不变呢?先认真想想,想好的同学举手告诉老师,一会儿老师要请同学说说你的猜想。

1)若学生没有得出猜想,举例引导 请同学们列出三条商为4的算式如:

16÷4=

32÷8=

64÷16= 认真观察你有什么发现呢?

看来同学们都有发现,那现在先和同桌说说你的发现。

2)得出一种猜想,你们可真是会猜想,现在打开书本93页,完成表格,验证下你们的猜想。通过表格,证明你们的猜想在表格中是成立的,那现在请同学们赶紧举个例子证明自己的发现吧。小组讨论,这些算式对不对呢?通过同学们的动手实践,我们得出了商不变的规律。

3)得出多种猜想时,同学的猜想可真不少,学生说猜想老师板书,请同学们举举例子证明自己的猜想。刚刚同学用自己的例子证明了猜想,现在请同学们打开课本93页,再一次验证下你们的猜想。通过同学们的动手实践,我们得出了商不变的规律。

被除数、除数同时扩大或缩小相同的倍数,商不变。(齐读)

3、巩固练习,光说不练可不好,现在老师就要让大家练一练。

(1)运用商不变规律口算

120÷40= 640÷80= 810÷90= 360÷60=

7200÷400= 2400÷200= 6400÷800=

哪一组举手的人最多老师就请哪一组开火车。其他组的同学认真听,他们组的答案对不对。

(2)学习了商不变的规律可以使我们的计算更为便捷,做一做

196÷4= 392÷8= 1960÷40= 19600÷400=

28÷4= 56÷8= 168÷24= 1680÷240=

课堂小结:通过这一节课的学习,你们都有什么收获呢?起来说一说。

这节课我们学习了商的变化规律以及不变的规律。

《商的变化规律》教学设计 篇6

教学内容:

人教版四年级上册第93页例5

教学目标:

1、通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。

2、引导学生经历知识的一般研究过程,培养学生研究问题、解决问题的能力。

3、培养学生善于观察、勇于发现、积极探索的好习惯。

教学重难点:

重点:帮助学生发现并理解商的变化规律。

难点:正确理解被除数不变,除数和商之间的变化规律。

教学过程:

一、创设情景,生成问题

师:经过这一段时间的努力,同学们的计算能力都得到了不同程度的提高。但老师想知道你们到底谁的进步更大一些?老师决定考一考你们:快速写出一个得数是2的除法算式。

师:谁能跟大伙说一说,你写的是哪一个算式。

随着学生的展示,教师有目的的随时手写几个得数是2的算式。

师:同学们的脑瓜转的真快,这么快就写出了这么多算式。请同学们仔细观察一下这些算式,你有什么发现?

生:算式不同,得数相同

师:孩子们,你们可真是火眼金睛,一下子就抓住了重点,哪你们想知道这些算式除了“算式不同,得数相同”外,究竟还存在着什么秘密吗?

(设计意图:“到底谁的进步更大一些”能够激发学生的学习热情;“快速写一个得数是2的除法算式”开门见山,直接找到本节课的切入点。)

二、探索交流,解决问题。

1、探索商不变的规律

1)独立思考,自主探索。

教师巡视,了解学生学习状况。

(设计意图:注重学生独立思考的重要性,保证在学生充分思考的前提下,再进行讨论。)

2)小组交流

师:有什么发现吗?想不想在小组内交流一下。老师提几点要求:小组长负责组织,每个同学都要发言,要按次序发言;记录员作好记录。

学生互动交流,在小组内展示各自的想法,比一比谁的想法更棒。小组内互相补充,形成小组意见。

教师巡视,积极参与学生的讨论。

3)集体交流

教师组织学生汇报各组的想法,依次板书。

师:是不是被除数变大,除数也跟着变大,商就一定不变呢?

组间质疑、辩论。

4)共同优化,形成结论

引导学生形成结论:

被除数和除数同时乘或除以相同的数(0除外)时,商不变。

5)验证结论

师:同学们我们发现的规律到底对不对呢?用你们自已手中的算式验证一下怎样?

小组合作验证

(设计意图:学生在经历猜测——验证的数学研究过程中理解、掌握商不变的规律,同时为下面的学习作了好的铺垫)

2、探索商的变化规律

师:同学们,我们知道被除数和除数同时乘或除以相同的数(0除外)时,商不变。如果被除数与除数只变一个,又将会怎么样呢?

学生猜测

1)学生独立思考,自主探索。

2)小组交流

学生互动交流,在小组内展示各自的想法。小组内互相补充,形成小组意见。

3)集体交流

教师组织学生汇报各组的想法,依次板书。组间质疑、辩论。教师适时点拔提升。

4)共同优化,形成结论

师:同学们我们发现的规律到底对不对呢?用你们自已手中的算式验证一下怎样?

小组合作验证,形成结论。

师:同学们你们知道吗?你们成功探索出了数学上的一条重要规律:商的变化规律。也让老师再一次感受到你们的聪明才智,你们真了不起!

(设计意图:学生探究知识的过程,不仅培养了学生善于观察、勇于发现、积极探索的好习惯,更让学生真正理解了商的变化规律。)

三、巩固应用,内化提高

快速写出它们的商

8÷2=90÷30=60÷10=

80÷20=900÷30=60÷20=

800÷200=9000÷30=60÷60=

(设计意图:学以致用,不仅使学生进一步了解到数学的价值,提高他们的学习兴趣,而且让学生获得的新知得到了很好的巩固)

四、回顾整理,反思提升。

经过今天的探索你们有什么新的收获呢?你还有什么要向大家说的?

板书设计:

商的变化规律

被除数÷除数=商

扩大(缩小)扩大(缩小)不变

扩大(缩小)不变扩大(缩小)

不变扩大(缩小)缩小(扩大)

《商的变化规律》教学设计 篇7

说教材

我讲的是人教版小学数学四年级上册第五单元“商的变化规律”,这是一节新授课,“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。通过计算比较,提出问题,引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好习惯。

通过本节课的教学,使学生理解掌握商不变的性质,会用商不变的性质对口算除法进行简便运算。学生在参与,观察,比较,猜想,概括,验证等学习过程中体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。

说教学目标

根据课程标准要求:小学数学教学要达到知识与技能,过程与方法,情感态度与价值观三维目标的有机结合,由此我定了一下教学目标:

通过计算,观察,比较,探索,使学生发现商随除数(或被除数)的变化而变化的规律。培养学生初步抽象和概括的能力。培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的兴趣。

教学重点难点:通过观察比较,探讨发现商的变化规律,掌握规律。

教学方法:探究法,合作法,观察法,比较法。

教具准备:实物投影,题卡、小黑板

我们的校本研修主题是:在数学课堂中如何使用激励性语言。我在本节课中的每一个教学环节,都要抓住适当的时机,适时,适当,适量的对学生进行激励性评价,建立评价目标多元,评价方法多样的评价体系,以达到全面了解学生的数学学习历程,激励学生学习热情,促进学生全面发展的目的。

说教法学法

本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。

说教学设计

在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。

我把整个教学过程分为六大环节进行的。

第一环节谈话引入,有利于吸引孩子注意力,激发学生学习兴趣。

第二环节,探究新知。我把例题用投影展示,既直观形象,又节省时间,快速达到目标。在这一环节当中有三个变化规律要探讨,第一个规律是被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,再放手让学生自学这一规律,就很容易了。第三个规律,是被除数和除数同时变化,相同的倍数(零除外)商不变。这是本课的重点内容,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。

第三环节是运用规律。采取了由易到难的设计方案,首先完成练习十七的四题,直接运用本节课所学的规律;第二完成五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。

第四环节,拓展训练。难度在此基础上又加大了一点,即锻炼学生的思维能力,又加深了对商不变规律的进一步理解。反馈练习加深巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。

第五环节,归纳总结,启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。

板书设计

这样设计的板书简洁明了,使学生对本课的重点一目了然。在对比下,便于学生掌握商的变化规律。

《商的变化规律》教学设计 篇8

教案背景:

第五单元两位数除法最后一个教学内容,学生在学习积不变的基础上学习商的变化规律。教学课题:商的变化规律

教材分析:

“商的变化规律”是人教版四年级上册第五单元最后一个教学内容,教材内容主要分两部分,第一部分是商变化规律,第二部分是商不变规律,商无规律的变化也得参与。教学目标:

1、让学生经历感悟、体验、猜想、观察、验证、应用等学习过程,使学生理解、掌握商不变规律和商的变化规律。

2、结合教学过程、学习材料培养学生观察、比较、抽象和概括的能力,并渗透“变与不变”、“对立与统一”等辨证唯物主义观点的启蒙教育。

3、引导学生善于发现、提出问题、探究问题、合作交流的学习能力。教学重、难点:商的变化规律的理解、掌握及应用。

教学方法:

探究学习法

教学过程基本设计:

课前预热:

1、填空:(出示课件)

2、复习积的变化规律

师:第三单元我们学习了三位数乘两位数的乘法,知道因数变化,积也会发生变化,谁来说一说积有哪些变化规律?学生说

一、创设情境,导入新课

师:这一单元我们学习了除法,大家猜想一下,如果被除数或者除数发生变化,商有没有变化规律呢?有什么变化规律呢?今天老师带大家进行快乐一课游,咱们一起去数学大世界的游乐园去玩一玩,你们想去吗?但是大家要用自己的智慧赢得机会,大家有信心吗?(出示课件)

二、观察算式,找规律:课件出示:(体育用品店)

1、师:这是体育用品店,从这个画面中你知道了哪些信息?学生找图中的信息

2、学生列出算式,算出结果。

3、师:除号左边的叫什么?(被除数)除号右边的叫什么?(除数)等号后面的叫什么?(商)板书:被除数

除数

师:看看这三个算式,哪些没变?哪些变了?当被除数没变的时候,除数和商是怎样变的?下面请同学们结合我的提示,完成导学单第一题出示提示:

1、从上往下观察,任选两个算式比比看,除数和商分别发生了怎样的变化?

2、从下往上看,任选两个算式比较,除数和商分别发生了怎样的变化?生汇报交流。

第(1)组算式教师一定要从引导学生按一定的顺序观察,根据学生的回答,要随机的引导学生弄清楚是拿谁与谁比,紧紧扣住谁没

变?谁变了?怎样变的?

在分组讨论中,教师深入小组,引导学生探究:讨论:是不是可以乘或除以任何数?

师:综合这两个变化规律,你们能用一句话说一说,当被除数不便时,除数和商有什么变化吗?

【在除法中,被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。】

师:同学们表现好极了!第一关顺利通过。挑战第二关。出示课件:乘船问题

请一个学生读信息,师:你们能帮他们解决问题吗?学生列算式,算出结果

师:认真观察这三个除法算式你发现了什么?【完成导学单第二题】

结合刚才的探究方法,先自己想想,再把你的想法和小组里的伙伴探讨一下。

(小组讨论,汇报交流)

学生结合第一题的方法,有顺序的汇报。

师:谁能用完整的话说一说,当除数不变时,被除数和商是怎么变化的?师:小结:当被除数不变时,商会随着除数的变化而变化,当除数不变时,商会随着被除数的变化而变化。这就是我们这节课共同探究的内容板书:商的变化规律。

师:请你们同桌相互说一说,当被除数不变时,除数和商怎样变?当除数不变时,被除数和商怎样变?学生同桌相互说

三、巩固练习,应用规律

师:我们能把商的变化规律大声的告诉我吗?全班齐读

师:我们顺利闯过了两个关口,进入了游乐园,游乐园正在搞活动只要你顺利通过了三道关卡,你可以免费玩转整个游乐宫,高兴吗?想挑战吗?

四、课堂小结:

你今天最大的收获是什么?你能对自己或同学或老师用一句话来评价一下吗?

五、课后实践:

用今天学到的学习方法,思考以下题目有什么规律?

32÷4=8 16÷8=2 64÷2=32

《商的变化规律》教学设计 篇9

教学内容:

人教版《义务教育课程标准实验教科书数学》四年级上册第93页。

教学目标:

1、 通过计算引导学生发现商的变化规律;

2、 巩固除法计算的知识,培养学生初步的抽象、概括能力以及善于观察,勤于思考、勇于探索的良好习惯;

3、 在教学过程渗透函数的思想。

教学重点:

通过计算引导学生总结商的变化规律。

教学难点:

全面理解和掌握商的变化规律以及运用商的变化规律进行计算。

一、旧知 — 铺垫

1.同学们,在第三单元我们已经学习了积的变化规律,谁来说说?(幻灯出示)现在请你运用规律分别求出这两组算式的积。(课件出示)

2 = 80 =

200 x 20 = 40 x 4 =

40 = 20 =

2.学生结合积的变化规律进行汇报。

二、探究——建构

1、探究商随除数(或被除数)变化而变化的规律。

同学们的知识掌握得真牢固,现在老师把求积变为求商,商是多少呢?(课件出示)

2 = 100 80 = 20

200 ÷ 20 = 10 40 ÷ 4 = 10

40 = 5 20 = 5

a、这个200在除法算式里叫什么?(被除数)2呢?(除数)求的是(商)。

板书:被除数、除数、商

b、师:请同学们仔细观察,你发现了什么?(同桌互相说说)

c、各请一个同学上台汇报,师适时板书。

《商的变化规律》教学设计 篇10

大家好!今天我说课的题目是《商的变化规律》。下面我将从说目标、说教法、说学法,说教学流程四个方面来对本课作具体阐述。

一、说目标。

本节课内容是人教版小学数学四年级上册87页的内容,本节课是在学生学习了笔算除法的基础上学习的,并为后面学习学习小数乘除法、分数、比的基本性质等知识奠定了基础,起到了承上启下的作用。

依据《新课程标准》要求、数学的学科特征和学生的年龄特点,我确定本节课的教学目标为:

知识与技能目标:理解并掌握商的变法规律,培养学生初步的抽象、概况能力。

过程与方法目标:经历对商的变法规律的探究过程,体验观察、比较、抽象、概况的思想和方法。

情感态度与价值观目标:在学习过程中,感受数学知识之间的逻辑之美,激发学生的探索精神,培养创新能力。

根据《数学课程标准》对本学段的教学要求,为了使学生顺利的达到教学目标,依据学生已有的生活经验和知识基础,我确立了本课的教学重点是:理解商的变化规律。;教学难点是:掌握商的变化规律解。

二、说教法。

教无定法,贵在得法。新课标指出,有效地学习活动必须建立在学生的知识发展水平和已有的知识经验基础之上。四年级小学生的认知水平正处于具体到抽象的过程,根据他们的这些特征,以及教学内容的特点,我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅的教学方法。

三、说学法。

《新课程标准》中提出:学生的学习应当是一个生动活泼的、主动的和富有个性的过程,认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。因此,观察法、动手实践、自主探究、合作交流是本节课学生的主要学习方式。

四、说教学流程:

我认为,钻研教材,研究教法和学法是搞好教学的前提和基础,而合理安排教学程序却是教学成功的关键一环。为了让学生学有所获,这一节课我设计了四个教学环节:

第一个环节:创设情境,激发兴趣。首先,我设计了孙悟空分饼的故事导入新课,创设情境,由故事引导学生去探索,激发学生的学习兴趣。这样设计的目的是,让孩子从开始就充满好奇心,满怀兴趣的参与学习,教学过程始终吸引孩子,把他们带入探索问题,发现规律的境界。

第二环节:探索交流,解决问题。

这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了3个教学活动。

活动一:探究除数不变,商随被除数的变化而变化。

教学例8时,利用学生已有的知识和经验基础,放手让学生通过计算观察、比较等活动去发现规律。然后,让学生用简洁的语言总结表述规律,我加以纠正或补充。最后让学生举例验证规律,进一步加深理解。

活动二:探究被除数不变,商随除数的变化而变化。

我放手让学生用探索第一个规律的方法,独立观察思考,也可以同桌或小组之间互相交流,然后汇报,结合课件演示,师生互动,产生共鸣。再举例验证。促使学生积极主动参与获取知识的过程,激发学生创新潜能。

活动三:商不变的性质。

有了前面两个规律的形成,第三个规律商不变的规律完全放手让学生探究,借助课件演示让学生明白比较时可以互相比,也可以同第一个比,但规律是一定的。

通过以上活动,其目的是让学生充分经历了观察、比较、分析、归纳、概括等数学活动与数学思考,在动眼、动手、动口、动脑中充分感知,发现并归纳总结出理解商的变化规律。

第三环节:巩固应用,内化提高。

对于新知需要及时组织学生巩固运用,才能得到理解和内化。本环节我依据教学目标和学生在学习中存在的问题,对课本做一做及练习十七的题目加以整理和归类,有针对性练习。使学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。

第四环节:回顾整理,反思提升。

今天你学会了什么?你有什么收获?你有什么感想?

通过全课总结,使学生对自己的学习过程、学习方法、学习成果等进行反思、评价。同时又可以培养学生的概括表达和自我评价的能力,以增强学生的自信心和荣誉感,使学生体验获得成功的乐趣。

以上就是我说课的全部内容,谢谢各位评委老师!

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2025/4/2 18:54:50