标题 | 数据挖掘工程师岗位职责 |
范文 | 数据挖掘工程师岗位职责 随着社会一步步向前发展,岗位职责的使用频率逐渐增多,岗位职责包括岗位职务范围、实现岗位目标的责任、岗位环境、岗位任职资格及各个岗位之间的相互关系等。想学习制定岗位职责却不知道该请教谁?下面是小编整理的数据挖掘工程师岗位职责,欢迎阅读与收藏。 数据挖掘工程师岗位职责1岗位职责: 深入研究业内领先的技术思路,输出具有创新价值的预研项目可行性分析报告以及相关实验数据; 负责产品、销售、供应链、电商等公司数据的海量挖掘,并建立和优化用户标签、特征模型、产品精准匹配、异常预警等; 负责大数据下传统机器学习算法的并行化实现及应用,并提出改进方法和思路; 参与公司大数据架构,负责BI实施中的数据挖掘模块算法研究、模型建立和优化,帮助实现数据挖掘和分析平台的建设; 负责相关数据挖掘项目的需求收集、项目建立、项目设计开发和结果输出质量把控,通过数据挖掘结果驱动业务执行; 配合技术进行数据挖掘模型开发和模型封装,例如决策规则模型、预警模型、流失模型、效果标杆模型、客户生命周期管理模型等; 任职要求: 大学本科及以上学历,统计学、计算机、信息技术、数学相关专业; 两年以上数据建模经验; 数据主流数据库,mysql、oracle、DB2等传统结构化数据仓库,熟悉HBase、MongoDB等非结构化数据库; 熟悉常用的聚类、分类、回归、关联、时间序列等监督式和非监督式学习算法; 熟悉R、Python、MLlib等数据挖掘工具中至少一种。 熟悉spark、storm等大数据计算框架者优先。 数据挖掘工程师岗位职责2职责: 1、整合基础业务数据,对基础数据库进行更新维护,参与部门常规报表开发与维护; 2、负责数据集市规划,开发及维护; 3、处理各业务模块数据需求,为业务运营提供数据分析方面咨询和建议; 4、负责搭建并完善业务指标监控体系,为管理层和运营层提供决策支持; 5、负责数据分析和应用相关的业务系统建设,编写对应系统开发需求,并完成系统测试及应用推广。 职位要求 1、两年以上工作经验,本科以上学历,计算机相关专业优先; 2、具有良好统计学及相关领域的理论基础,熟悉数理统计、数据分析工作方法,具有较强的数据分析能力; 3、精通SQLPython语言,有银行数据仓库,数据集市开发经验者优先; 4、具备较强文字分析和数据处理能力,能独立编写数据分析报告; 5、具备开阔的互联网业务思维,对数据敏感,有较好的业务开拓和沟通表达能力。 数据挖掘工程师岗位职责3岗位职责: 负责团队现有算法的优化,代码实现以及移植 负责算法计算性能优化,并推动其上线应用 基于大规模用户数据,以效果为目标,建立并优化系统的基础算法和策略 应用机器学习等尖端技术,针对海量信息建模,挖掘潜在价值跟踪新技术发展,并将其应用于产品中; 跟踪新技术发展,并将其应用于产品中 协助其它技术人员解决业务及技术问题 任职资格: 熟练使用Java、python、scala语言(至少一门),熟悉面向对象思想和设计模式 具备一年以上机器学习理论、算法的研究和实践经验 擅长大规模分布式系统。海量数据处理。实时分析等方面的算法设计。优化 熟悉Hadoop、spark等大数据处理框架 具备分布式相关项目研发经验(如分布式存储/分布式计算/高性能并行计算/分布式cache等) 熟悉大规模数据挖掘、机器学习、分布式计算等相关技术,并具备多年的实际工作经验 对数据结构和算法设计有深刻的理解 具有良好的分析问题和解决问题的能力,有一定数学功底,能针对实际问题进行数学建模 良好的逻辑思维能力,和数据敏感度,能能够从海量数据中发现有价值的规律 优秀的分析和解决问题的能力,对挑战性问题充满激情 良好的团队合作精神,较强的沟通能力 数据挖掘工程师岗位职责4职责: 1、对海量业务数据进行分析,并利用算法挖掘用户行为特征,发现潜在规律,建立机器学习算法并优化; 2、利用数据挖掘技术分析、预测用户的'消费行为; 3、建立各种业务逻辑模型和数学模型,帮助公司改善运营管理,节省成本。 任职要求: 1、大学本科及以上学历; 2、统计学、会计学、数学、物理等相关专业; 3、本科5年以上同岗位工作经验,研究生3年以上同岗位工作经验; 4、对统计学和数据挖掘算法原理有较为深刻的理解,了解数据仓库思想,熟悉SPSS、SAS、R、MAHOUT等数据挖掘软件之一; 5、熟悉决策树、聚类、逻辑回归,关联分析、SVM,贝叶斯等数据挖掘算法,有海量数据挖掘的项目经验; 6、有用户行为分析、用户建模、业务建模、数学建模经验优先; 7、良好的逻辑分析能力、分析问题和解决问题的能力,对数据敏感,良好的沟通能力。 数据挖掘工程师岗位职责5岗位职责: 1、对通信和金融业务数据进行分析和挖掘,满足研发和运营等部门的业务需求和决策需求; 2、能根据业务特点选择最合适的数据挖掘算法,并做调优; 3、支持数据分析、挖掘算法平台的部署和日常运营; 4、撰写分析类报告。 任职资格: 1、大学本科或本科以上统计学、数学或其他相关专业,对数据结构熟悉; 2、熟练使用python进行数据分析、处理、可视化。熟悉numpy/pandas/matplotlib等常用模块。熟练使用sql,最好用过hive-sql或spark-sql; 3、对hadoop/spark有一定了解。能够简单使用hadoop系列命令; 4、对线性回归,决策森林,xgboost,评分卡等数据挖掘相关算法有一定了解; 5、做过web接口调试,熟悉json者优先; 6、熟练掌握PPT和EXCEL制作; 7、具备良好的学习、沟通与表达能力,具有较强的团队合作精神,对工作富有热情,能承受工作压力; 8、有运营商或金融类相关数据经验工作优先考虑; 9、能适应中长期现场出差。 数据挖掘工程师岗位职责6岗位职责: 1.参与金融大数据平台系统和算法的研发和优化; 2.基于大数据金融场景,进行信用风险模型,风控模型,营销模型的创新设计; 3.与业务部门沟通合作,将数据模型应用于实际业务。 任职要求: 1.计算机相关专业硕士及以上学历,至少7年以上相关工作经验;; 2.具有良好的商业敏感度和优秀的数据分析技能,能够开发创新而实际的分析方法以解决复杂的商业问题。 3.熟悉机器学习的一般模型;例如分类.聚类.预测,理解一些常用的特征选择和矩阵分解算法。 4.熟悉深度神经网络和常用模型(如CNN,DBN,sparseconding,RNN等),有Caffe或Theano或ConvNet的实践经验。 5.在语义理解检索(如知识图谱表示.结构化预测.语义解析.信息检索.知识挖掘等)有过深入的工作与研究。 6.较强的自学能力.优秀的逻辑思维能力和良好的沟通表达能力和敬业精神。 7.具备良好的系统分析能力,良好的抽象思维和逻辑思维能力,独立分析问题解决问题的能力; 8.可承受较大压力,有责任感,较强的沟通协调能力,具有团队合作精神; 9.有互联网公司.大型金融企业和大型IT企业工作经历的优先。 数据挖掘工程师岗位职责7职责: 1、负责对海量文本内容进行要素提取,精分类别、关联挖掘等技术的研发工作; 2、负责实现文本挖掘技术的产品化,并且结合招标领域开展应用与优化; 3、能指导较低职位的工程师完成工作; 4、能与高校科研机构进行协同创新。 任职资格: 1、模式识别/人工智能/计算机相关专业,本科或以上学历;3年以上工作经验; 2、正直、诚信、敬业、有激情、有良好团队交流能力; 3、精通Java、Python语言,熟悉linux基本开发环境; 4、精通NLP相关领域知识,拥有较为丰富的文本处理经验:精准分词、实体抽取、属性抽取、关系抽取、分类聚类、主题挖掘、POI挖掘等; 5、具有NLP实战经验,参与过相关项目,有知识图谱/深度学习研发经验者优先;熟悉Hadoop、Spark、Storm等分布式处理框架者更佳; 6、熟悉Git,SVN等通用工具; 7、对自然语言处理、知识图谱构建、人工智能等具有浓厚的兴趣。 数据挖掘工程师岗位职责8职责: 1、负责内容的处理,包括关键词提取、主题分析、类目预测、质量打分等; 2、负责海量用户行为的分析研究,挖掘优化用户画像,包括人口属性和用户兴趣等; 3、负责推荐引擎算法的开发,包括各类推荐算法的实现、特征和参数调优、用户体验优化等; 4、负责数据营销平台策略的开发,包括用户洞察、行业指数趋势预测、各类精准定向算法的实现和优化等; 5、负责人工智能技术的研究,包括机器学习、知识推理、文本语义理解、计算机视觉等技术; 6、通过海量数据对用户广告的行为进行深入分析与洞察,提炼和发现业务规律,指导推荐模型特征构建,定位产品相关的数据问题及分析优化; 7、结合广告投放场景和用户画像进行分析、归纳统计指标建设,协助模型快速定位问题。 招聘要求及条件: 1、具备数据挖掘、NLP、机器学习、最优化等算法原理知识背景; 2、具备推荐系统、精准营销、信息检索等方面的工作经验优先; 3、具备大规模分布式计算平台的使用和并行算法的开发经验,对大数据处理及应用有浓厚兴趣; 4、具有机器学习、数据挖掘、算法优化的基础并具有浓厚兴趣; 5、熟悉统计原理及检验方法、熟悉数据分析方法; 6、熟悉分类、回归、聚类、降维等机器学习算法及应用场景; 7、熟悉Java、Python等,能独立完成相关的数据分析及分析报告相关工作。 数据挖掘工程师岗位职责9职责: (1)分析需求,完成相关数据抽取、数据清洗、数据探索、数据建模分析等工作; (2)按要求完成数据分析报告、建模报告、数据报表等; (3)对数据进行深度挖掘和建模,做运营和用户等各方面分析,深度挖掘运营优化和用户行为特征等,推动分析问题的解决,为业务决策提供日常支持; (4)与业务部门和技术部门对接,完成设计,编写,维护和完善公司业务相关的算法。 (5)参与项目成果汇编,对相关结果进行解读和汇报。 任职要求: (1)大专以上学历,统计、数学、计算机、软件专业优先; (2)熟练使用Python,Mysql语言,具有一定的工程能力,完善的文档和注释习惯。熟悉JupyterLab远程代码编写环境,Linux常用命令。会使用R,Java,Scala等语言更佳。 (3)熟悉数据分析过程,能够完成数据抽取、数据处理、数据建模、数据分析报告等任务; (4)一定的数据挖掘/机器学习理论和技术基础,了解常用的数据挖掘算法如:聚类模型、线性回归、逻辑回归、分类模型、决策树模型等。 数据挖掘工程师岗位职责10岗位职责: 业务数据的收集整理和分析; 负责公安、交通领域的业务建模和算法设计; 分析项目数据需求,完成系统中数据分析模块的设计、实现和测试; 设计、构建和优化基于大数据的存储平台架构,编写相关技术文档; 设计并实现基于开源项目(Cobar,Spark等)的海量数据集成与处理平台; 为其他部门提供数据分析支撑。 任职资格: 计算机相关专业; 熟悉数据挖掘算法,对分类、聚类、时序、图等算法有很深了解; 熟练掌握Hadoop、Spark生态系统组件(MR、HBase、Hive、ZooKeeper、Spark SQL、Spark Mlib等),有相关大数据架构,开发成功案例; 熟练的使用、开发ETL工具经验,有数据库建模ER建模经验优先; 有海量数据BI或数据挖掘项目实施和管理经验,对数据挖掘理论方法有一定了解者优先; 熟悉的Bash Shell和Python等脚本编程能力; 强烈的责任心和工作热情,良好的团队合作精神。 数据挖掘工程师岗位职责11职责: 1.依据项目需求建构数据萃取与转换流程 2.挖掘数据特征,进行数据和特征融合 3.搭建数学模型,并对模型进行检验评估 职位要求: 1、计算机、数学、统计、人工智能等相关专业的硕士或以上学历; 2、二年以上数据挖掘、机器学习相关工作经验,熟悉python、spark、pandas、sklearn等数据分析工具者优先; 3、熟练掌握贝叶斯、随机森林、深度学习等机器学习算法; 4、突出的分析问题和解决问题能力,自我驱动,并且具备较强的学习能力、创新应用能力及沟通协调能力,有良好的团队合作意识; 5、有国际背景或能熟练使用英文沟通者优先 数据挖掘工程师岗位职责12工作职责: 1、运用数据挖掘和机器学习方法和技术,深入挖掘和分析海量商业数据 2、包括但不限于风控模型、用户画像、商家画像建模、文本分析和商业预测等 3、运用数据挖掘/统计学习的理论和方法,深入挖掘和分析用户行为,建设用户画像 4、从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题 任职要求 —计算机、数学,统计学或人工智能等相关专业硕士以上学历,5—10年以上或相关工作经历 —精通1—2种编程语言(Python或Java),熟练掌握常用数据结构和算法,具备比较强的实战开发能力,能带领团队共同进步。 —具有统计或数据挖掘背景,并对机器学习算法和理论有较深入的研究 —熟悉数据挖掘相关算法(决策树、SVM、聚类、逻辑回归、贝叶斯) —具有良好的学习能力、时间和流程意识、沟通能力 —熟悉Spark或hadoop生态分布式计算框架 —优秀的沟通能力,有创新精神,乐于接受挑战,能承受工作压力 —有互联网,央企,政务,金融等领域大规模数据挖掘经验者优先 数据挖掘工程师岗位职责13岗位职责: 1、负责构建公司数据分析与数据挖掘业务分析体系,整体架构设计、规划,充分发挥数据的价值,提高数据质量,促进公司业务更好的发展; 2、通过建立业务的数据分析模型来指导业务的发展,对数据库信息进行深度挖掘和有效利用,充分实现数据的商业价值,构建公司核心竞争力; 3、跟踪并分析用户行为,为公司广告业务的发展及产品的设计进行海量数据支持; 4、负责数据管理中心团队的建设、发展、激励、培训等管理工作,有效领导数据分析与挖掘团队支持和推动业务发展。 任职要求: 1、热爱数据,对数据及逻辑关系敏感,并对数据体系有深入的认识; 2、本科以上学历、计算机/统计学/经济学等相关专业,有一定工作经验,; 3、具备数据建模(机器学习,数据挖掘,信息检索背景)和分析理论知识和经验; 4、熟悉Linux平台的海量数据分布式存储、分布式计算; 5、熟悉常用的数据分析工具,有基于Hadoop的云计算平台,HBase及类似的NoSQL存储, MySQL,和BI系统等实践经验; 6、熟悉互联网并且对于互联网常见的业务形态与商业模式有深入的理解,对业务变化有敏锐的洞察力; 7、有较强的对业务理解与分析能力,了解业务规划与策划能力以及相应经验; 8、具备较强的问题定位、分解、解决能力及计划和组织能力; 9、善于创新、思维敏捷、精力充沛,沟通能力强,能够承受较大工作压力; 10、有电子商务或互联网数据仓库或商业智能架构设计、开发实施经验者优先。 数据挖掘工程师岗位职责14职责: 1、根据项目经理或高级数据挖掘工程师要求独立完成项目的数据搜集和数据处理; 2、能够快速根据项目需要学习并理解行业知识,并能在项目经理或高级数据挖掘工程指导下完成部分数据分析工作; 3、能够使用SAS,SPSS,或R,Python等开源平台根据用户需求定制开发相应的算法; 4、理解数据挖掘模型及预测分析结果,撰写相关分析报告; 5、了解数据仓库及商务智能背景,熟练掌握一类数据展现分析工具,如:Tableau,Cognos等; 任职要求 1、信息化管理、数学或统计学专业背景本科以上学历; 2、具有一定的统计学、数据挖掘知识基础,有数据仓库/商业智能项目经验尤佳; 3、精通数据挖掘方法论,熟悉数据挖掘项目过程; 4、熟悉并掌握SAS、SPSS统计分析或数据挖掘工具至少一种;或具备Python,R等使用开源平台开发算法的经验; 5、有很强的事业心、责任感,良好敬业精神、团队精神与人际沟通能力。 数据挖掘工程师岗位职责15职责: 1.负责海量数据的分析开发工作; 2.完成数据挖掘模型,跟踪模型的实施和效果,定期优化算法和分析策略,分析研究后提供建设性建议 ; 3.优化大数据存储、计算等各方面性能,确保能从海量大数据信息里,有效进行数据分析和挖掘; 4.根据用户的活动记录进行特征筛选和关联挖掘。提高关联准确性; 5.参与相关数据标准和规范的制定。 要求: 1.熟悉java/scala/python/R中至少一种编程语言,具有良好的编码习惯; 2.计算机、数学相关专业本科以上学历; 3.2年以上数据挖掘及其相关经验,对常用的数据挖掘算法有较深入了解,有实际算法调优经验 ; 4.熟悉常用数据挖掘算法(聚类/分类/回归/关联规则/图模型)等算法原理,具备实际的建模经验,熟悉常用机器学习算法原理,如朴素贝叶斯/决策树/随机森林/逻辑回归/SVM等,并具备相关应用经验; 5.熟悉hadoop生态,具有spark/flink等实际开发经验; 6.极强的数据敏感度,能从海量数据中挖掘出数据核心价值,相关; 7.熟悉分布式存储,熟悉mysql/oracle、hbase、redis、mogongdb、elasticsearch等,熟悉neo4j/JanusGraph等图数据库优先 ; 8.富有创新精神,充满激情,乐于接受挑战,良好的沟通技巧和团队合作,抗压性强,能适应加班。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。