标题 | 七年级第二学期数学单元综合复习题 |
范文 | 七年级第二学期数学单元综合复习题精选 一、选择题 1.(2014浙江湖州,第10题3分)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( ) A.B. C.D. 分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断. 解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE. 同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS, 即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS; B选项延长AF、BH交于S1,作FK∥GH, ∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB, ∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH, ∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH, ∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK, ∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB, 同理可证得AI+IK+KM+MB 点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等. 2.(2014年广西南宁,第11题3分)如图,在ABCD中,点E是AD的中点,延长BC到点F,使CF:BC=1:2,连接DF,EC.若AB=5,AD=8,sinB=,则DF的长等于( ) A.B.C.D.2 考点:平行四边形的判定与性质;勾股定理;解直角三角形.. 分析:由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CFDE的对边平行且相等(DE=CF,且DE∥CF),即四边形CFDE是平行四边形.如图,过点C作CH⊥AD于点H.利用平行四边形的性质、锐角三角函数定义和勾股定理求得CH=4,DH=1,则在直角△EHC中利用勾股定理求得CE的长度,即DF的长度. 解答:证明:如图,在ABCD中,∠B=∠D,AB=CD=5,AD∥BC,且AD=BC=8. ∵E是AD的中点, ∴DE=AD. 又∵CF:BC=1:2, ∴DE=CF,且DE∥CF, ∴四边形CFDE是平行四边形. ∴CE=DF. 过点C作CH⊥AD于点H. 又∵sinB=, ∴sinD===, ∴CH=4. 在Rt△CDH中,由勾股定理得到:DH==3,则EH=4﹣3=1, ∴在Rt△CEH中,由勾股定理得到:EC===, 则DF=EC=. 故选:C. 点评:本题考查了平行四边形的判定与性质、勾股定理和解直角三角形.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题. 3.(2014年贵州黔东南10.(4分))如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的'长为( ) A.6B.12C.2D.4 考点:翻折变换(折叠问题). 分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解. 解答:解:设BE=x,则CE=BC﹣BE=16﹣x, ∵沿EF翻折后点C与点A重合, ∴AE=CE=16﹣x, 在Rt△ABE中,AB2+BE2=AE2, 即82+x2=(16﹣x)2, 解得x=6, ∴AE=16﹣6=10, 由翻折的性质得,∠AEF=∠CEF, ∵矩形ABCD的对边AD∥BC, ∴∠AFE=∠CEF, ∴∠AEF=∠AFE, ∴AE=AF=10, 过点E作EH⊥AD于H,则四边形ABEH是矩形, ∴EH=AB=8, AH=BE=6, ∴FH=AF﹣AH=10﹣6=4, 在Rt△EFH中,EF===4. 故选D. 点评:本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口. |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。