标题 | 高中必修一数学知识点总结 |
范文 | 高中必修一数学知识点总结 第一章集合与函数概念一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素. (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素. (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样. (4)集合元素的三个特性使集合本身具有了确定性和整体性. 3、集合的表示: { … }如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法. 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作 a∈A ,相反,a不属于集合A记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上. 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法. ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 高一数学必修一综合测试真题第I卷(选择题) 1.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则U(A∩B)= A.{1,4,5}B.{2,3}C.{4,5}D.{1,5} 2.设集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},则A∪B= A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D. 3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},则(UM)∩N等于 A.{1}B.{2}C.{3,4}D.{5} 4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},则A∩B等于 A.{0}B.{2}C.φD.φ 5.设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为. A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1) 6.已知集合A={1,2,3},B={0,1,2},则A∩B的子集个数为 A.2B.3C.4D.16 7.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是 A.0B.0或1C.﹣1D.0或﹣1 8.已知集合M={x|(x﹣1)=0},那么 A.0∈MB.1MC.﹣1∈MD.0M 9.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,则a的取值范围是 A.a<2B.a>﹣2C.a>﹣1D.﹣1<a≤2 10.以下五个写法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正确的个数有 A.1个B.2个C.3个D.4个 11.集合{1,2,3}的真子集的个数为 A.5B.6C.7D.8 12.已知3∈{1,a,a﹣2},则实数a的值为 A.3B.5C.3或 5D.无解 13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,则实数a的所有可能取值的集合为 A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2} 14.设所有被4除余数为k(k=0,1,2,3)的整数组成的集合为Ak,即Ak={x|x=4n+k,n∈Z},则下列结论中错误的是A.2016∈A0B.﹣1∈A3C.a∈Ak,b∈Ak,则a﹣b∈A0D.a+b∈A3,则a∈A1,b∈A2 二、填空题 16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,则实数m= .17.对于任意集合X与Y,定义:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=. 18.函数y=的定义域为A,值域为B,则A∩B=. 19.若集合为{1,a,}={0,a2,a+b}时,则a﹣b= .20.用M[A]表示非空集合A中的元素个数,记|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为. 三、解答题 21.已知不等式x2+mx+3≤0的解集为A=[1,n],集合B={x|x2﹣ax+a≤0}. (1)求m﹣n的`值; (2)若A∪B=A,求a的取值范围. 22.已知函数f(x)的定义域为(0,4),函数g(x)=f(x+1)的定义域为集合A,集合B={x|a<x<2a﹣1},若A∩B=B,求实数a的取值范围. 23.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(UA)∩B={﹣2},求实数p、q、r的值. 25.已知元素为实数的集合S满足下列条件:①0S,1S;②若a∈S,则∈S. (Ⅰ)若{2,﹣2}S,求使元素个数最少的集合S; (Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确. 26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R} (1)若A∩B=[0,4],求实数m的值; (2)若A∩C=,求实数b的取值范围; (3)若A∪B=B,求实数m的取值范围. 试卷答案 1.A 2.D 3.C 4.B 5.B 6.C 7.D 8.D 9.C 10.B 11.C 12.B 13.D 14.D 16.1 17.[﹣3,﹣1)∪(3,+∞) 18.[0,2] 19.﹣1 20.0≤a<4或a>4 21.(1)利用韦达定理,求出m,n,即可求m﹣n的值; (2)若A∪B=A,BA,分类讨论求a的取值范围. 【解答】解:(1)∵不等式x2+mx+3≤0的解集为A=[1,n], ∴,∴m=﹣4,n=3, ∴m﹣n=﹣7; (2)A∪B=A,∴BA. ①B=,△=a2﹣4a<0,∴0<a<4;②B≠,设f(x)=x2﹣ax+a,则,∴4≤a≤, 综上所述,0<a≤. 22.【解答】解:要使g(x)有意义,则:0<x+1<4, ∴﹣1<x<3, ∴A={x|﹣1<x<3}; ∵A∩B=B, ∴BA; ①若B=,满足BA, 则a≥2a﹣1,解得a≤1; ②若B≠,则, 解得1<a≤2; 综上,实数a的取值范围是(﹣∞,2]. 23.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2+ax+b=0的两个根, ∴a=﹣1,b=﹣2 即a,b的值分别是﹣1,﹣2. 24.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1}, ∴1+p+1=0,解得p=﹣2; 又1+q+r=0,① (UA)∩B={﹣2}, ∴4﹣2q+r=0,② 由①②组成方程组解得q=1,r=﹣2; ∴实数p=﹣2,q=1,r=﹣2. 本题考查了集合的定义与应用问题,是基础题目. 25.【解答】解:(Ⅰ)2∈S,则﹣1∈S,∈S,可得2∈S;﹣2∈S,则∈S,∈S,可得﹣2∈S, ∴{2,﹣2}S,使元素个数最少的集合S为{2,﹣1,,﹣2,, }. (Ⅱ)非空有限集S的元素个数是3的倍数. 证明如下: (1)设a∈S则a≠0,1且a∈S,则∈S, =∈S, =a∈S 假设a=,则a2﹣a+1=0(a≠1)m无实数根,故a≠. 同理可证a,,两两不同. 即若有a∈S,则必有{a,, }S. (2)若存在b∈S(b≠a),必有{b,, }S.{a,, }∩{b,, }=. 于是{a,,,b,, }S. 上述推理还可继续,由于S为有限集,故上述推理有限步可中止, ∴S的元素个数为3的倍数. 26.【解答】解:(1)由A中不等式变形得:(x﹣4)(x+1)≤0, 解得:﹣1≤x≤4,即A=[﹣1,4]; 由B中不等式变形得:(x﹣m+3)(x﹣m﹣3)≤0, 解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3], ∵A∩B=[0,4], ∴, 解得:m=3; (2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4], ∴实数b的范围为b≥4; (3)∵A∪B=B, ∴AB, ∴, 解得:1≤m≤2. |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。