标题 | 《三角形边的关系》数学教学设计 |
范文 | 《三角形三条边的关系》数学教学设计范文(精选3篇) 作为一名默默奉献的教育工作者,常常要写一份优秀的教学设计,借助教学设计可以更好地组织教学活动。教学设计应该怎么写呢?下面是小编为大家收集的《三角形三条边的关系》数学教学设计范文,仅供参考,大家一起来看看吧。 《三角形边的关系》数学教学设计1教学目标: 1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。 2、感受动手实验是探索数学规律的途径和方法。 3、培养学生初步的应用数学知识解决实际问题的能力。 教学重点: 在观察、操作、比较、分析中发现三角形边的关系。 教学难点: 应用三角形边的关系解决问题。 教学方法: 观察法、动手操作法、小组讨论法 教学过程: 一、设境导入,猜想质疑 小明和我们一样每天都按时上学,请看小明到学校的线路图(课件示)小明上学共有几条路线?有一天小明起来晚了,你们猜猜他肯定会走哪条路去学校?为什么? 今天我们用数学知识来解决这个问题,请观察路线①和路线②围成的近似一个什么图形?路线②和路线③又近似一个什么图形?走路线②,走过的路程是三角形的一条边,走旁边的路走过的路程实际上是三角形的另外两条边的和。根据大家的判断,走三角形的两条边的和要比第三边大。是不是所有的三角形的三条边都有这样的关系呢? 这节课我们一起来研究一下,板书课题:三角形三条边的关系 二、小组合作,实验探究 实验1:我们都知道三角形是由三条线段首尾相连围成的封闭图形。现在从学具中任意拿出三根小棒,摆一摆,看看你发现了什么? ①学生动手操作。 ②交流,展示汇报。(出现了两种情况:一种可以摆出三角形,另一种摆不出三角形。) 实验2:看来,不是任意三条线段都能围成三角形,有的同学用三根小棒摆成了三角形,有的同学没有摆成,这是什么原因?下面我们就对这两种情况做一个深入的探究。 ①小组按要求合作,完成实验报告单(教师指导) ②反馈:A、首先我们看看怎样的三条线段能围成三角形?(生展示汇报,师板书) 通过仔细观察发现:任意两条边的和大于第三边。(板书) 质疑:‘任意’是什么意思?能举例说明吗?(生汇报) ③B、下面我们再来看看怎样的三条线段不能围成三角形?(生展示汇报,师板书) 通过对比发现不能围成情况有: a)两边的和小于第三边; b)两边的和等于第三边; 检验其他记录的情况,对比发现:两边的和小于或等于第三边就不能围成三角形。(相机板书) 小结:通过我们实验观察,知道了三角形的两边之和大于第三边。(出示课件) 三、建构模型,联系生活 (出示课件)小明上学示意图,现在你能用三角形的三边关系解释小明为什么走中间这条路吗?(同桌互说后,交流) 四、巩固应用,深化练习 1、做一做:教科书第86页第4题(出示课件) 学生独立完成后,汇报方法。优化出快捷的判断方法:用较小的两条边的和大于第三边就可以做到任意两条边的和大于第三条边。 2、试一试现在有两根分别是3厘米和7厘米的小棒。猜一猜,与它们能组成三角形的第三根小棒的长是多少厘米?(取整厘米数)(出示课件)学生独立思考30秒后,小组讨论。 《三角形边的关系》数学教学设计2教学目标: 1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。 2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。 教学重点、难点: 探索并发现三角形任意两边之和大于第三边。 教学准备: 学生、老师各准备几根长短不等的小棒、直尺、探究报告单。 教学过程: 一、复习旧知,导入新课 这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。 二、动手操作,发现问题 师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形? 生:三角形。 师:谁愿意上来围一围?围的时候要注意小棒首尾相连。 师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。 三、猜想验证,发现规律 师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢? 生:换一根小棒 师:怎样换?同学们说的都是你们的猜想(课件1演示猜想1) 1、学法指导 师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。 操作要求: (1)、2人一组合作完成四种拼法 (2)、围三角形时要注意首尾相连。 (3)、完成后,填写好活动记录表准备交流 第一根小棒长 第二根小棒长 第三根小棒长 能否围成三角形 2、动手操作,寻找规律(师巡视,并指导) 3、交流汇报,探究规律。 师:哪个小组愿意来汇报。 小组上台展示, 3厘米、8厘米、10厘米,能 3厘米、5厘米、10厘米,不能 3厘米、5厘米、8厘米,不能 5厘米、8厘米、10厘米,能 师:其它组有不同意见吗? 师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系? 三根小棒要围成三角形,必须满足什么条件? 通过刚才的`实验和分析,你发现三角形三条边长度之间有什么关系吗? 先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形? 生: 师:其他同学赞同吗?谁再来说一说。 师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示) 师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈? 生:3+5=8,重合了,不能 师:是这样吗?(课件演示)请看大屏幕。 师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。 师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。 师:那么怎样才能围成三角形呢? 生:两条边加起来要大于第三边就行了。 师(板书):两边之和大于第三边 师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10 看起来是这样的。 3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢? 生:有一种不符合就不行了 师:看来只是其中的两条边之和大于第3条边是不完整的, 生1:加“任何”、“任意” 生2:其他两边之和都大于第三条边。 生3:无论哪两条边之和都要大于第三边。 4、归纳小结 师:看来只是其中的两条边之和大于第3条边是不完整的, 师:这句话概括说就是:任意两边之和大于第三边(板书:任意) 师:是这样吗?再挑选一组能围成三角形的三条边,来验证: 生:3+4>5、3+5>4、4+5>3, 师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读) 四、课堂小结 老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走? 师:今天你有什么收获 《三角形边的关系》数学教学设计3【教材分析】 本课是在学生初步了解三角形定义的基础上,让学生进一步理解三角形的特征,即“三角形任意两边之和大于第三边”,加深学生对三角形的认识,同时也为今后学习三角形和四边形的联系和区别打下基础。三角形边的关系的定理主要提供了判断三条线段能否组成三角形的依据,熟练灵活地运用三角形三边关系有助于提高学生全面思考问题的能力。教材积极创设了动手操作的情境,力求让学生在活动中感知、体会并进行归纳总结。同时,也让学生对演绎推理和反证法有初步的了解。 这节课力求让学生在动手操作与引申思考中,经历“发现问题—总结规律—解决问题—实践应用”的过程,真正放手让学生去“做数学”,经历“数学化”的过程。 在学具的准备上,运用了胶片上画线段的方法来摆三角形,尽可能地减小了操作中的误差。 【学生分析】 对于三角形,学生并不陌生,通过前面的学习,学生已经初步认识了三角形,知道三角形有三条边、三个顶点和三个角,以及三角形稳定性的知识,这些都是学生进一步进行学习的基础。学生乐于动手,喜欢实践,并在前几年的学习中,掌握了一定的实践方法和思考方式,同时比较善于发现和总结,这也将为本节课的学习做好铺垫。 【教学过程】 一、创设生活情境,揭示课题 (课件出示:教师上班路线图) 师:老师从家里出发到学校上班有三条路可以走,你认为老师走哪条路近呢? 生1:我认为老师走第二条路近,因为第一条和第三条路都是弯的,只有第二条路是直的。 生2:我也认为老师走第二条路近。 师:是啊,弯来弯去的线总是比直的线要长。现在老师请同学们再仔细观察,连接老师家、公园和学校三个地方,接近一个什么图形?连接老师家、国贸大厦和学校这三个地方,又接近一个什么图形? 生:三角形。 师:老师走一、三两条路就好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,三角形的三条边有什么关系呢?我们是否可以从三角形的三条边的关系来解释老师上班走哪条路近的问题呢?这节课,我们就来研究三角形边的关系。(板书课题:三角形边的关系) 二、开展探索活动,体验边的关系 1、发现问题。 师:老师手里有一根吸管,想把它随意剪成三段,什么是随意呢? 生1:随自己的意思,可长可短。 师:把这根吸管随意剪成三段,能围成三角形吗? 生2:能。 生3:不一定。 师:每人从材料袋中,取出一根吸管来剪一剪、围一围。 (学生活动,教师巡视了解情况,有的围成,有的围不成) 师:看来不是随意剪成三段就能围成三角形的,这里面肯定有学问,大家想研究吗?(想)那谁愿意把没围成的作品提供给大家研究?(一学生将作品呈上) 师:有谁觉得能围成,想来帮帮他?(一学生上来帮助,教师也帮助围,还是围不成) 师:怎么会围不成呢?是什么原因?请同桌同学小声商量一下。 生4:因为其中的两根吸管太短了,再长一些就围得成了。 师:同学们认为两根吸管的长度和小于第三根所以围不成,那么,两根吸管的长度和多长时才可以围成呢? 2、进行猜想。 生1:我认为当两根吸管的长度和等于第三根时才可以围成。(板书) 生2:我认为当两根吸管的长度和大于第三根时才可以围成。(板书) 生3:我认为要随便的两根吸管的长度和都大于第三根时才可以围成。(板书:随便) 师:这些都只是同学们的猜想,这些猜想是否正确呢?当我们在学习中遇到这种情况时,可以怎么办? 生:可以做实验来验证一下。 3、实验验证。 师:在做实验前,老师还有些不放心,“两根吸管的长度和等于第三根”这个实验的材料怎么找呢? 生1:可以量一量,剪一剪。 生2:把一根吸管对折剪开,其中的一段再平分成两段。 生3:拿三根一样长的吸管就可以了。 师:这样的话,两根吸管的长度和还等于第三根吗? 生4:大于第三根,可以用做第二个实验的材料。 师:现在就请同桌合作完成实验,特别注意是否要“随便的两根”。 (学生实验,教师巡视指导) 师:实验结束了,我们来开个实验结果发布会吧!谁愿意第一个上来发布实验结果。 生5:我们做第一个实验。先挑选两根一样长的吸管,并把其中一根平均剪成两段,我们发现两根吸管的长度和等于第三根时不能围成三角形。(学生边说边演示围的过程) 师:大家的实验结果与他们一样吗? 生6:我们的实验结果是:两根吸管的长度和等于第三根时能围成三角形。(学生上台演示围的过程) 生7:老师,他们的实验材料有问题,两根吸管的长度和已经大于第三根了,所以这个实验的结果是错的。 师:数学是非常严谨的学科,来不得半点马虎,我们一定要认真仔细。 生8:老师,我们的实验结果也是围成的。(学生上台演示围的过程) 师:对于他们这一组的实验情况,同学们有什么想说的吗? 生9:老师,他们在围的时候,两根吸管的端点根本没有接触,其实是没有围成三角形。 师:老师请你们再试试好吗?(这一组学生按要求再试了一次,果然围不成) 师:现在你们想重新发布实验结果吗? 生10:两根吸管的长度和等于第三根时不能围成三角形。 师:虽然这组同学的实验有问题,但他们敢于发表自己的观点来解决疑问,学习就是要有这种精神才会进步。 师:谁来发布第二个实验结果? 生11:当两根吸管的长度和大于第三根时可以围成三角形。(学生边说边演示围的过程,大部分学生表示赞同) 生12:我觉得你说的不对。这是我开始没有围成三角形的那三根吸管,其中一根短的吸管与一根长的吸管的长度和也是大于第三根的,可是却围不成三角形。所以,要随便的两根吸管的长度和都大于第三根时才可以围成三角形。(全班学生都赞同他的想法) 师:你想问题很全面,老师和同学都很佩服你,真了不起!现在谁能把实验的结果再来发布一下? 生13:任何两根吸管的长度和大于第三根时,可以围成三角形。 师:我们可以把“随便”、“任何”说成“任意”。(板书:任意) 4、得出结论。 师:那么,对于已经围成的三角形,是否意味着任意两边的和都大于第三边呢?请大家拿出课前画好的三角形量一量、算一算。 生1:我量出三角形的三条边分别是3厘米、2厘米、2.6厘米,经过计算发现,三角形任意两边的和都大于第三边。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。