标题 | 函数的奇偶性说课课件 |
范文 | 函数的奇偶性说课课件 有的老师为了更好地向学生讲述函数的奇偶性,提前准备了说课课件,一起去看看吧! 课题:1.3.2函数的奇偶性 一、三维目标: 知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。 过程与方法:通过设置问题情境培养学生判断、推断的能力。 情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。 二、学习重、难点: 重点:函数的奇偶性的概念。 难点:函数奇偶性的判断。 三、学法指导: 学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的.应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。 四、知识链接: 1.复习在初中学习的轴对称图形和中心对称图形的定义: 2.分别画出函数f (x) =x3与g (x) = x2的图象,并说出图象的对称性。 五、学习过程: 函数的奇偶性: (1)对于函数 ,其定义域关于原点对称: 如果______________________________________,那么函数 为奇函数; 如果______________________________________,那么函数 为偶函数。 (2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。 (3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 。 六、达标训练: A1、判断下列函数的奇偶性。 (1)f(x)=x4;(2)f(x)=x5; (3)f(x)=x+ (4)f(x)= A2、二次函数 ( )是偶函数,则b=___________ . B3、已知 ,其中 为常数,若 ,则 _______ . B4、若函数 是定义在R上的奇函数,则函数 的图象关于 ( ) (A) 轴对称 (B) 轴对称 (C)原点对称 (D)以上均不对 B5、如果定义在区间 上的函数 为奇函数,则 =_____ . C6、若函数 是定义在R上的奇函数,且当 时, ,那么当 时, =_______ . D7、设 是 上的奇函数, ,当 时, ,则 等于 ( ) (A)0.5 (B) (C)1.5 (D) D8、定义在 上的奇函数 ,则常数 ____ , _____ . 七、学习小结: 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。 补充练习题: 1.下列各图中,不能是函数f(x)图象的是() 解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C. 2.若f(1x)=11+x,则f(x)等于() A.11+x(x≠-1) B.1+xx(x≠0) C.x1+x(x≠0且x≠-1) D.1+x(x≠-1) 解析:选C.f(1x)=11+x=1x1+1x(x≠0), ∴f(t)=t1+t(t≠0且t≠-1), ∴f(x)=x1+x(x≠0且x≠-1). 3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=() A.3x+2 B.3x-2 C.2x+3 D.2x-3 解析:选B.设f(x)=kx+b(k≠0), ∵2f(2)-3f(1)=5,2f(0)-f(-1)=1, ∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2. |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。