标题 | 方程解应用题加答案 |
范文 | 方程解应用题加答案 方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。以下是小编为大家整理的方程解应用题加答案,欢迎大家借鉴与参考,希望对大家有所帮助。 方程解应用题加答案 1 1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇? 设慢车开出a小时后与快车相遇 50a+75(a-1)=275 50a+75a-75=275 125a=350 a=2.8小时 2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离. 设原定时间为a小时 45分钟=3/4小时 根据题意 40a=40×3+(40-10)×(a-3+3/4) 40a=120+30a-67.5 10a=52.5 a=5.25=5又1/4小时=21/4小时 所以甲乙距离40×21/4=210千米 3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数? 设乙队原来有a人,甲队有2a人 那么根据题意 2a-16=1/2×(a+16)-3 4a-32=a+16-6 3a=42 a=14 那么乙队原来有14人,甲队原来有14×2=28人 现在乙队有14+16=30人,甲队有28-16=12人 4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率. 设四月份的利润为x 则x*(1+10%)=13.2 所以x=12 设3月份的增长率为y 则10*(1+y)=x y=0.2=20% 所以3月份的增长率为20% 5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排.如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍.求有多少人? 设有a间,总人数7a+6人 7a+6=8(a-5-1)+4 7a+6=8a-44 a=50 有人=7×50+6=356人 6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油? 按比例解决 设可以炸a千克花生油 1:0.56=280:a a=280×0.56=156.8千克 完整算式:280÷1×0.56=156.8千克 7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本? 设总的书有a本 一班人数=a/10 二班人数=a/15 那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本 8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗.这个小队有多少人?一共有多少棵树苗? 设有a人 5a+14=7a-6 2a=20 a=10 一共有10人 有树苗5×10+14=64棵 9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油? 设油重a千克 那么桶重50-a千克 第一次倒出1/2a-4千克,还剩下1/2a+4千克 第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油 根据题意 1/8a-5/3+50-a=1/3 48=7/8a a=384/7千克 原来有油384/7千克 10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人) 设96米为a个人做 根据题意 96:a=33:15 33a=96×15 a≈43.6 所以为2班做合适,有富余,但是富余不多,为3班做就不够了 11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数. 设原分数分子加上123,分母减去163后为3a/4a 根据题意 (3a-123+73)/(4a+163+37)=1/2 6a-100=4a+200 2a=300 a=150 那么原分数=(3×150-123)/(4×150+163)=327/763 12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解) 设水果原来有a千克 60+60/(2/3)=1/4a 60+90=1/4a 1/4a=150 a=600千克 水果原来有600千克 13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解) 设原来有a吨 a×(1-3/5)+20=1/2a 0.4a+20=0.5a 0.1a=20 a=200 原来有200吨 14、王大叔用48米长的篱笆靠墙围一块长方形菜地.这个长方形的长和宽的比是5:2.这块菜地的面积是多少? 设长可宽分别为5a米,2a米 根据题意 5a+2a×2=48(此时用墙作为宽) 9a=48 a=16/3 长=80/3米 宽=32/3米 面积=80/3×16/3=1280/9平方米 或 5a×2+2a=48 12a=48 a=4 长=20米 宽=8米 面积=20×8=160平方米 15、某市移动电话有以下两种计费方法: 第一种:每月付22元月租费,然后美分钟收取通话费0.2元. 第二种:不收月租费 每分钟收取通话费0.4元. 如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢? 设每月通话a分钟 当两种收费相同时 22+0.2a=0.4a 0.2a=22 a=110 所以就是说当通话110分钟时二者收费一样 通话80分钟时,用第二种22+0.2×80=38>0.4×80=32 通过300分钟时,用第一种22+0.2×300=82<0.4×300=120 16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿.怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套? 设a个工人加工桌面,则加工桌腿的工人有你60-a人 3a=(60-a)×6/4 12a=360-6a 18a=360 a=20 20人加工桌面,60-20=40人加工桌腿 17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离 设距离为a千米 a/(17/6)-24=a/3+24 6a/17-a/3=48 a=2448千米 18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地.乙从B地到A地,在A地停留40分钟后,又从A地返回B地.已知两人同时分别从A B两地出发,经过4小时.在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度? 设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时 30分钟=1/2小时,40分钟=2/3小时 (4-2/3)a+(a+1.5)×(4-1/2)=12×3 10/3a+7/2a+21/4=36 41/6a=123/4 a=4.5千米/小时 甲的速度为4.5+1.5=6千米/小时 22、2007年有中小学生5千名2008年有所增加小学生增加百分之20,中学生增加百分之30这样2008年新增加1160名,小学生每人每年收500元中学生每人每年收1000元求2008年新增的1160名共收多少“借读费”? 设2007年有小学生a人,中学生5000-a人 a×20%+(5000-a)×30%=1160 0.2a+1500-0.3a=1160 0.1a=340 a=3400人 中学生有5000-3400=1600人 小学生增加3400×20%=680人 增加中学生1160-680=480人 共收借读费500×680+1000×480=820000=82万 23、商场搞促销活动,承诺大件商品可分期付款,但仅限为 2005年 五月一日 购买时先付一笔款,余下部分其他的利息(年利润为3%)在2006年五月一日 还清,某空调参与了,它的售价为8120元,若想够买,恰好两次付款此时相同,那么应付总款数多少元? 设先付a元,余下8120-a元未付 根据题意 a=(8120-a)×(1+3%) a=8363.6-1.03a 2.03a=8363.6 a=4120元 应付总款数为4120×2=8240元 方程解应用题加答案 2 甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍.甲、乙原有存款各有多少元? 考点:列方程解含有两个未知数的应用题. 分析:根据“如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍”,可找出数量之间的相等关系式为:(甲原来的存款-60)×2=乙原来的存款+60,再根据“原来甲的存款是乙的5倍”,设原来乙的存款为x元,那么甲的存款就是5x元,据此列出方程并解方程即可. 解答:解:原来乙的存款为x元,那么甲的存款就是5x元,由题意得: (5x-60)×2=x+60, 10x-120=x+60, 10x-x=120+60, 9x=180, x=20, 甲的存款:5×20=100(元); 答:甲原有存款100元,乙原有存款20元. 方程解应用题加答案 3 某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需( )工时。 考点:列方程解应用题 分析:已知缝纫师做不同衣物所用时间的比为1:2:3,由此可设设缝纫师做一件衬衣的时间为x,则一条裤子的时间为2x,做一件上衣用时为3x.所以据“他用十个工时能做成2件衬衣、3条裤子和4件上衣”,可得方程:2x+3×(2x)+4×(3x)=10,解此方程,求出x的值后即求出他要做成14件衬衣、10条裤子和2件上衣需要的工时是多少. 解:设缝纫师做一件衬衣的时间为x,则一条裤子的时间为2x,做一件上衣用时为3x. 由此可得方程: 2x+3×(2x)+4×(3x)=10 20x=10, x=0.5; 则完成2件上衣、10条裤子、14件衬衣共需: 2×(3×0.5)+10×(2×0.5)+14×0.5 =3+10+7 =20(工时). 答:共需20工时. 故答案为:20. 点评:人教版小学五年级奥数题列方程解应用题:完成本题的关健是根据他做不同衣物所用时间的比设出未知数,然后再据已知条件得出等量关系式列出方程. 方程解应用题加答案 4 有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。 例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双? 分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。 设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。 解:设有胶鞋x双,则有布鞋(46-x)双。 7.5x-5.9(46-x)=10, 7.5x-271.4+5.9x=10, 13.4x=281.4, x=21。 答:胶鞋有21双。 分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以 答:袋中共有74个球。 在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。 例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?[ 分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程 80x-40=(30x+40)×2, 80x-40=60x+80, 20x=120, x=6(座)。 分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。 (x-40)×80=(2x+40)×30, 80x-3200=60x+1200, 20x=4400, x=220(米3)。 由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。 同理,也可设有红砖x米3。留给同学们做练习。 例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生? 分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程 x-10=[(x-10)×2-9]×5, x-10=(2x-29)×5, x-10=10x-145, 9x=135, x=15(个)。 例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表: 还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验? 分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数, 0×7+1×5+2×4+6×(x-7-5-4) = 5+8+6×(x-16) = 6x-83, 也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,[ 3×(x-3-4-1)+8×3+9×4+10×1, = 3×(x-8)+24+36+10 = 3x+46。 由此可得方程 6x-83=3x+46, 3x=129, x=43(人)。 例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。 分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程 4÷(150-3x)=8÷(150-x), 4×(150-x)=8×(150-3x), 600-4x=1200-24x, 20x=600, x=30(千克)。 练习23 还剩60元。问:甲、乙二人各有存款多少元? 有多少溶液? 3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水? 4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人? 5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生? 含金多少克? 7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只? |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。