网站首页  词典首页

请输入您要查询的范文:

 

标题 初二年级数学下册同步练习试题
范文

初二年级数学下册同步练习试题

1.如图1,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数 和 的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为( )

A.3 B.4 C.5 D.10

2.如图2,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,

∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为( )

A.22 B.20 C.18 D.16

3.如图3,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为( )

A.3 B.2 C.2 D.2

4.运动会上初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元;

乙种雪糕共30元,甲种雪糕比乙种雪糕多20根,乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为 ( )

A. - =20 B. - =20 C. - =20 D. - =20

5.如图4,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的'面积S1与矩形QCNK的面积S2的关系是S1 S2(填“>”或“<”或“=”)

6.若分式方程2+ = 有增根,则k=________.

7.先化简,再求值: + ,其中a= +1.

8.如图,直线y=- x+6分别与x轴、y轴交于A、B两点;直线y= x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿 轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).

(1)求点C的坐标;(2)当0

(3)当t>0时,直接写出点(4, )在正方形PQMN内部时t的取值范围.

【答案】C.【解析】

试题分析:连接AO,BO,

因为同底,所以S△AOB=S△ABC,根据k的函数意义,得出面积为:3+2=5.

故选C.

考点:反比例函数系数k的几何意义.

【答案】D.【解析】

试题分析::在Rt△ABC中,

∵AC=6,AB=8,

∴BC=10,

∵E是BC的中点,

∴AE=BE=5,

∴∠BAE=∠B,

∵∠FDA=∠B,

∴∠FDA=∠BAE,

∴DF∥AE,

∵D、E分别是AB、BC的中点,

∴DE∥AC,DE= AC=3

∴四边形AEDF是平行四边形

∴四边形AEDF的周长=2×(3+5)=16.

故选D.

考点1.平行四边形的判定与性质2.勾股定理3.三角形中位线定理.

【答案】B

【解析】连结EF,

∵△ABE≌△GBE.

∴AB=BG=3

AE=EG= AD,

∴EG=ED ∴△EFD≌△EFG,

∴FG=FD=2. ∴BF=BG+FG=5

在Rt△BCF中,BC= =2 .

10.若函数y= 的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )

A.m>-2 B.m<-2 c.m="">2 D.m<2

【答案】B

【解析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围:m<-2.故选B.

【答案】B

【解析】等量关系为甲种雪糕-乙种雪糕=20根,故选B.

【答案】=.

【解析】

试题分析:设矩形ABCD的边长分别为a,b,S1的边长分别为x,y.

∵MK∥AD

∴ ,即 ,则x= a.

同理:y= b.

则S1=xy= ab.

>

同理S2= ab.

所以S1=S2.故答案为S1=S2.

故答案是=.

【答案】1

【解析】方程两边同乘以(x-2),得

2(x-2)+1-kx=-1

因原方程的增根只能是x=2,将x=2

代入上式,得1-2k=-1,k=1.

【答案】

【解析】

解:化简原式= + ×

= + =

当a= +1时,原式= = .

【答案】(1)300;(2)补图见解析;(3)48°;(4)480.

【解析】

试题分析:(1)用文学的人数除以所占的百分比计算即可得解.

(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.

(3)用体育所占的百分比乘以360°,计算即可得解.

(4)用总人数乘以科普所占的百分比,计算即可得解.

(1)∵90÷30%=300(名),

∴一共调查了300名学生.

(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.

补全折线图如下:

(3)体育部分所对应的圆心角的度数为: ×360°=48°.

(4)∵1800× =480(名),

∴1800名学生中估计最喜爱科普类书籍的学生人数为480.

考点:1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.用样本估计总体.

【答案】(1)(3, );(2)当0

【解析】

试题分析:(1)利用已知函数解析式,求两直线的交点,得点C的坐标即可;

(2)根据几何关系把s用t表示,注意当MN在AD上时,这一特殊情况,进而分类讨论得出;

(3)利用(2)中所求,结合二次函数最值求法求出即可.

试题解析: (1)由题意,得

,解得: ,

∴C(3, );

(2)∵直线 分别与x轴、y轴交于A、B两点,

∴y=0时, ,解得;x=8,

∴A点坐标为;(8,0),

根据题意,得AE=t,OE=8-t.

∴点Q的纵坐标为 (8-t),点P的纵坐标为- (8-t)+6= t,

∴PQ= (8-t)- t=10-2t.

当MN在AD上时,10-2t=t,

∴t= .

当0

当0

∴t= 时,S最大值= .

当 ≤t<5时,S=4(t-5)2,

∵t<5时,S随t的增大而减小,

∴t= 时,S最大值= .

∵ > ,

∴S的最大值为 .

(3)点(4, )在正方形PQMN内部时t的取值范围是 .

考点: 一次函数综合题.

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 15:28:23