标题 | 初中九年级二次函数知识点总结 |
范文 | 初中九年级二次函数知识点总结 总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。那么总结应该包括什么内容呢?以下是小编收集整理的初中九年级二次函数知识点总结,希望能够帮助到大家。 初中九年级二次函数知识点总结1教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 教学难点:求出函数的自变量的取值范围。 教学过程: 一、问题引新 1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中, AB长_(m) 1 2 3 4 5 6 7 8 9 BC长(m) 12 面积y(m2) 48 2._的值是否可以任意取?有限定范围吗? 3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_) 二、提出问题,解决问题 1、引导学生看书第二页问题一、二 2、观察概括 y=6_2 d= n /2 (n-3) y= 20 (1-_)2 以上函数关系式有什么共同特点? (都是含有二次项) 3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项. 4、课堂练习 (1) (口答)下列函数中,哪些是二次函数? (1)y=5_+1 (2)y=4_2-1 (3)y=2_3-3_2 (4)y=5_4-3_+1 (2).P3练习第1,2题。 五、小结叙述二次函数的定义. 第二课时:26.1二次函数(2) 教学目标: 1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。 2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。 教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象 教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。 初中九年级二次函数知识点总结2I.定义与定义表达式 一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=a_^2+b_+c(a,b,c为常数,a≠0) 顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)] 交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线_=-b/2a。 对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0) 2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与_轴交点个数 Δ=b^2-4ac>0时,抛物线与_轴有2个交点。 Δ=b^2-4ac=0时,抛物线与_轴有1个交点。 Δ=b^2-4ac<0时,抛物线与_轴没有交点。 _的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a) V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=a_^2+b_+c, 当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0 此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。 初中九年级二次函数知识点总结3当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象; 当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象; 因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a). 3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小. 4.抛物线y=a_^2+b_+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0 (a≠0)的两根.这两点间的距离AB=|_?-_?| 当△=0.图象与_轴只有一个交点; 当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0. 5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式: y=a_^2+b_+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0). (3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现. 初中九年级二次函数知识点总结4一、基本概念 1.方程、方程的解(根)、方程组的解、解方程(组) 2.分类: 二、解方程的依据—等式性质 1.a=b←→a+c=b+c 2.a=b←→ac=bc (c≠0) 三、解法 1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。 2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加减法 四、一元二次方程 1.定义及一般形式: 2.解法:⑴直接开平方法(注意特征) ⑵配方法(注意步骤—推倒求根公式) ⑶公式法: ⑷因式分解法(特征:左边=0) 3.根的判别式: 4.根与系数顶的关系: 逆定理:若,则以为根的一元二次方程是:。 5.常用等式: 五、可化为一元二次方程的方程 1.分式方程 ⑴定义 ⑵基本思想: ⑶基本解法:①去分母法②换元法(如,) ⑷验根及方法 2.无理方程 ⑴定义 ⑵基本思想: ⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法 3.简单的二元二次方程组 由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。 六、列方程(组)解应用题 一概述 列方程(组)解应用题是中学数学联系实际的'一个重要方面。其具体步骤是: ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。 ⑶用含未知数的代数式表示相关的量。 ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 ⑸解方程及检验。 ⑹答案。 综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 二常用的相等关系 1.行程问题(匀速运动) 基本关系:s=vt ⑴相遇问题(同时出发): + = ; ⑵追及问题(同时出发): 若甲出发t小时后,乙才出发,而后在B处追上甲,则 ⑶水中航行:; 2.配料问题:溶质=溶液_浓度 溶液=溶质+溶剂 3.增长率问题: 4.工程问题:基本关系:工作量=工作效率_工作时间(常把工作量看着单位“1”)。 5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。 初中九年级二次函数知识点总结5计算方法 1.样本平均数: 2.样本方差: 3.样本标准差: 相交线与平行线、三角形、四边形的有关概念、判定、性质。 内容提要 一、直线、相交线、平行线 1.线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区别与联系) 11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。 12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、三角形 分类: ⑴按边分; ⑵按角分 1.定义(包括内、外角) 2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中, 3.三角形的主要线段 讨论:①定义②__线的交点—三角形的_心③性质 ①高线②中线③角平分线④中垂线⑤中位线 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形 4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积 ⑴一般计算公式⑵性质:等底等高的三角形面积相等。 7.重要辅助线 ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法 ⑴直接证法:综合法、分析法 ⑵间接证法—反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来 三、四边形 分类表: 1.一般性质(角) ⑴内角和:360° ⑵顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。 ⑶外角和:360° 2.特殊四边形 ⑴研究它们的一般方法: ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 ⑶判定步骤:四边形→平行四边形→矩形→正方形 菱形 ⑷对角线的纽带作用: 3.对称图形 ⑴轴对称(定义及性质);⑵中心对称(定义及性质) 4.有关定理:①平行线等分线段定理及其推论1、2 ②三角形、梯形的中位线定理 ③平行线间的距离处处相等。(如,找下图中面积相等的三角形) 5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。 6.作图:任意等分线段。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。