标题 | 初三数学扇形知识点归纳总结 |
范文 | 初三数学扇形知识点归纳总结 总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,不如静下心来好好写写总结吧。那么你真的懂得怎么写总结吗?以下是小编整理的初三数学扇形知识点归纳总结,仅供参考,欢迎大家阅读。 初三数学扇形知识点归纳总结11、弧长公式 n°的圆心角所对的弧长l的计算公式为L=nπr/180 2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长. S=﹙n/360﹚πR2=1/2×lR 3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径. S=1/2×l×2πr=πrl 4、弦切角定理 弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角. 弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角. 一、选择题 1.(20xxo珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为() A.24πcm2B.36πcm2C.12cm2D.24cm2 考点:圆柱的计算. 分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解. 解答:解:圆柱的侧面积=2π×3×4=24π. 故选A. 点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法. 2.(20xxo广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是() A.B.C.D. 考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算. 分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论. 解答:解:连接OC, ∵△ACE中,AC=2,AE=,CE=1, ∴AE2+CE2=AC2, ∴△ACE是直角三角形,即AE⊥CD, ∵sinA==, ∴∠A=30°, ∴∠COE=60°, ∴=sin∠COE,即=,解得OC=, ∵AE⊥CD, ∴=, ∴===. 故选B. 初三数学扇形知识点归纳总结2用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。 常用统计图的优点 1、条形统计图:可以清楚的看出各种数量的多少。 2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的'增减变化情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。 扇形的面积大小 在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。) 易错分析 【易错题1】为了清楚地看出各年级人数应采用()统计图,需要清楚地看出学校各年级的人数占全校总人数的百分比情况应采用()统计图,记录一天气温变化情况采用()统计图比较合适。 【错因分析】答案:扇形,折线,条形。 本题主要考察学生对三种常用统计图的理解情况。从回答情况看,学生没有理解三种统计图的特点和用途,不会根据实际情况灵活选择合适的统计图,因此导致出错。 【思路点拨】条形统计图的特点是用直条长短表示各个数量的多少;折线统计图的特点是能清楚地表示数量增减变化的情况;扇形统计图的特点是表示各部分与总数的百分比,以及部分与部分之间的关系。 【易错题2】要统计牛奶中各种营养成份所占的百分比情况,你会选用()。 ①条形统计图②折线统计图③扇形统计图④复式统计图 【错因分析】本题主要考察学生对扇形统计图的掌握情况。学生容易选择其他类型的统计图。 【思路点拨】应该选择③,扇形统计图能清楚地表示出部分与总体的百分比。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。