标题 | 圆与方程教案圆与方程课件 |
范文 | 圆与方程教案圆与方程课件 作为一名人民教师,可能需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?以下是小编整理的圆与方程教案圆与方程课件,仅供参考,欢迎大家阅读。 圆与方程教案圆与方程课件1《一元二次方程》教案及反思 教学目标: 1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型 2、理解什么是一元二次方程及一元二次方程的一般形式。 3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。 教学重点 1、一元二次方程及其它有关的概念。 2、利用实际问题建立一元二次方程的数学模型。 教学难点 1、建立一元二次方程实际问题的数学模型. 2、把一元二次方程化为一般形式 教学方法:指导自学,自主探究 课时:第一课时 教学过程: (学生通过导学提纲,了解本节课自己应该掌握的内容) 一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念) 1、请认真完成课本p39—40议一议以上的`内容;整理化简上述三个方程.。 2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗? 3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念 你觉得理解这个概念要掌握哪几个要点?你还掌握了什么? 二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握) 1、下列哪些是一元二次方程?哪些不是? ①②③ ④x2+2x-3=1+x2 ⑤ax2+bx+c=0 2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。 (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1) 3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少? 4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程? 5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程? 三、总结反思:(学生总结,进一步加深本节课所学内容) 这节课你学到了什么? 四、自查自省:(通过当堂小测,及时发现问题,及时应对) 1、下列方程中是一元二次方程的有a、1个b、2个c、3个d、4个 (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。 3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程. 作业:必做题:习题7.1 选做题:(挑战自我)p41随堂练习 1、已知关于的方程是一元二次方程,则为何值? 2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程? 3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少? 4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.? 圆与方程教案圆与方程课件2一元二次方程的概念 教材分析: 1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。 2.这些概念是全章后继内容的基础。 3.让学生体会数学来源于生活,又服务于生活的基本思想。 学情分析: 1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。 2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。 3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的'设计上要针对学生的差异采取分层设计的方法,着重加强对学生的双基训练。 教学目标: 一、知识与技能: 1.理解一元二次方程的概念,能判断一个方程是一元二次方程。 2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项. 二、过程与方法: 1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念。 2.培养独立思考,合作交流学,分析问题,解决问题的能力。 三、情感态度与价值观: 1.培养学生主动探究知识、自主学习和合作交流的意识. 2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识. 3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。 教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。 教学难点: 1.由实际问题向数学问题的转化过程. 2.正确识别一般式中的“项”及“系数”. 3.一元二次方程的特点,如何判断一个方程是一元二次方程。 教学过程: 一、创设情境,引入新课 1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划无公害蔬菜的产量比翻一番,要实现这一目标,和20无公害蔬菜产量的年平均增长率是多少?(通过放幻灯片引入) 设无公害蔬菜产量的年平均增长率为x,20的产量为a(a≠0),翻一番的意思就是a变为2a,那么 (1)用代数式表示20的产量; (2)年蔬菜的产量比年增加了2x,对吗?为什么?你能用代数式表示出来吗? 学生思考交流得出方程a(1+x)2=2a 整理得,x2+2x-1=0…………① 2.通过幻灯片引入情境,提出问题: 问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少? 设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示? 这个问题的相等关系是什么? 320×200-(320x+2×200x-2x2)=57000 整理得x2-36x+35=0 谁还能换一种思路考虑这个问题? 把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程? (320-2x)(200-x)=57000 整理得x2-36x+35=0…………② 比较一下,哪种方法更巧妙? 3.通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少? 设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5x)件。可列方程为:(50-x)(100+5x)=6000 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。