标题 | 平行四边形的面积教学设计 |
范文 | 人教版平行四边形的面积教学设计(通用10篇) 作为一名教师,时常需要用到教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。教学设计应该怎么写呢?下面是小编帮大家整理的人教版平行四边形的面积教学设计最新,仅供参考,希望能够帮助到大家。 平行四边形的面积教学设计 1教学目标: 1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。 2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。 3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。 教学重点: 探索并掌握平行四边形的面积计算方法。 教学难点: 理解平行四边形面积计算公式的推导过程。 教学工具: 电子白板课件、平行四边形模型、剪刀、初步探究学习卡 教学过程: 一、课前引入、渗透转化。 1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗? 2.播放制作七巧板的视频。 3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。 二、创设情境,揭示课题。 1.电子白板导出两个花坛,比一比,哪个大? 2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。 三、对手操作,探究方法。 1.利用数方格,初步探究 2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的'方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡” 四、白板演示,验证猜想。 1.探索把一个平行四边形转化成已学习过的图形。 2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。 3.平行四边形的面积=底×高 4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。 五、巩固练习,加深理解。 1.课件出示例1 2.课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件 六、课堂小结,反思回顾。 回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的? 平行四边形的面积教学设计 2教学目标 1、知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。 2、能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。 3、过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。 4、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。 教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。 难点平行四边形面积公式的推导过程。 教具 1、多媒体计算机及课件; 2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。 教学过程 一、质疑引新: 1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽] (出示平行四边形)这又是什么图形?指出平行四边形的底和高? 2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]——————————请同学们打开课本69页。 二、引导探求: ㈠、提出问题: 1、用数方格法求平行四边形的面积 ⑴、谈话:我们以前研究长方形面积计算的时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。 ⑵、数出方格图中平行四边形的面积。提问: A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例) B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米? ⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米? 2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。 1平方厘米 3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢? 电脑逐步显示:平行四边形的面积=长方形的面积。 平行四边形的底=长方形的长; 平行四边形的高=长方形的宽; 引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧! 电脑展示: (1)底、高、不变,面积不变。 (2)底、高改变,面积变化。 你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗? ㈡、推导公式: 1、小组合作研究: 长方形的'面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示) ⑴、怎样剪拼才能将平行四边形转化成长方形? ⑵、转化后的图形与原平行四边形有什么关系? (要求:比一比,看一看,哪一个小组最能干,拼得又对又快?) 2、各小组实验操作,教师巡视指导。 3、各小组交流实验情况: ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流! ⑵、有没有不同的剪拼方法?(继续请同学演示)。 ⑶、电脑演示各种转化方法。 4、小组合作讨论归纳总结规律: ⑴、平行四边形剪拼成长方形后,什么变了?什么没变? ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系? ⑶、剪样成的图形面积怎样计算? ⑷、小组上台汇报,指着图形说一次得出: 因为:长方形的面积=长×宽 所以:平行四边形的面积=底×高(同位指着图形说) 7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“、”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a、h或S=ah(板书)。 ㈢、巩固公式: 1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高) ㈣、应用解决: 1、自学教材P70例题 下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米) 板书:32.6×8.4≈274(平方米) 答:它的面积约是274平方米、 (挑一学生的作业投影评讲) 平行四边形的面积教学设计 3一、说教材。 《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经掌握了长方形和正方形的面积计算、面积概念和面积单位,以及认识了平行四边形,清楚了其特征及底和高的概念的基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。为了更好地体现《数学课程标准》的理念,通过学习来解决生活中的实际问题,让学生感受到数学就在身边,人人学有价值的数学。 根据以上对教材的理解与内容的分析,按照新课程标准中掌握4~6学段空间与图形的要求,我将本节课的教学目标定为: 1、知识目标:能应用公式计算平行四边形的面积; 2、能力目标:理解推导平行四边形面积计算公式的过程,培养学生抽象概括的能力。 3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。 根据新课程标准中的教学内容和学生的认知能力,我将本节课的教学重点定为: 能应用公式计算平行四边形的面积。 教学难点定为:理解平行四边形面积的推导过程,并能运用公式解决实际问题。 二、说教法、学法。 根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法: 1、教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学习数学的兴趣和积极思维的动机,引导学生主动地探索。 2、动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的.知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。 3、满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积计算方法,提高学生的思维能力。 4、联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。 三、说教学过程。 第一环节:创设情境、激趣导入。 通过创设情境:小兔乐乐想从三快草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出平行四边形草地的面积。 这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。 第二环节:活动探究,获取新知。 学生独立思考,动手操作,尝试用不同方法计算平行四边形的面积。根据这些方法,展开其中的割补法,通过转化—找关系—推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出平行四边形面积的计算公式。 这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。 第三环节:练习应用,巩固提高。 课后练习和一些变式的习题。 紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。 第四环节:联系生活,深化应用。 让学生做应用题。 这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。 平行四边形的面积教学设计 4教学内容: 苏教版第八册第42页“平行四边形面积的计算” 教学目标: 1、发现平行四边形面积的计算方法。 2、能类推出平行四边形面积的计算公式。 3、能准确进行平行四边形面积的计算。 4、培养学生的动手操作、观察、分析、类推能力。 5、渗透转化思想,培养学生的空间观念。 教学重点: 掌握平行四边形面积的计算公式,准确计算平行四边形面积。 教学难点: 平行四边形面积公式的推导过程。 教学具准备: 自剪平行四边形,作业纸,课件。 教学过程: 一、复习铺垫: 1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答) 2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢? 3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分) 二、引导探索、揭示新知: 1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的底是多少?高是多少?(指名回答) 有谁知道它的面积是多少?你怎么知道的? 那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢? 这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算) 2、实验操作 (1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形) (2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快! (3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示) (4)为什么要沿高剪开呢?(因为长方形的四个角都是直角) 3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。 第一步画:从平行四边形一个钝角的顶点向对边作高。 第二步剪:沿高把平行边形剪成两部分。 第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。 4、公式推导 (1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系? 根据回答板书: 长方形的面积长宽 平行四边形的面积底高 (2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书 同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。 请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。 师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。 5、教学字母公式 如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成: s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍 三、应用公式、尝试例题 1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米? 问:题目中要求的是什么形状物体的`面积?告诉了什么条件?请试着做一做 (1)指名板演(其余学生做在课堂练习本上) (2)集体评讲 2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便? 四、巩固练习 同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名) 五、全课总结 通过这堂课的学习你有什么收获? 师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。 六、学到这儿,你有没有这方面知识的思考题来让大家动动脑? 机动思考题: 1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少? 2、选择条件,用两种方法算出平行四边形的面积,看看是否相等? 平行四边形的面积教学设计 5一、说教材 (一)教材简析 本课是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形的基础上进行教学的,是进一步学习三角形、梯形等平面图形的面积的基础,在整个教材体系中起到承上启下、举足轻重的作用。 (二)学情分析 五年级学生虽然已经具有一定的空间观念和逻辑思维能力,但学生的认知水平还存在一定的局限性,对于理解推导图形面积的计算公式和描述推导的过程是有一定难度的。 (三)目标分析 依据课标要求和具体的教学内容,我确定本节课的教学目标如下: 1.通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确计算平行四边形的面积。 2.让学生经历平行四边形面积公式的推导过程,渗透转化的思想方法。 3.通过活动感受数学与生活的密切联系。 教学重点:理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。 教学难点:理解平行四边形面积公式的推导方法及过程。 二、说教法 新课标中指出:要让学生经历知识形成的过程,重视学生的动手操作,尊重和利用学生已有的知识经验,采用谈话法、直观演示法、启发法、尝试法、引导发现法,让学生亲身体验知识的形成过程,促进学生思维的发展。 三、说学法 教学时,充分发挥学生的主体作用,能够通过动手实践、自主探究、合作交流的学习方式来转化并推导出平行四边形面积计算公式,在交流的过程中,学生各抒己见,真正的做到不仅学会,而且会学。 四、说教学实践 为了更好地凸显“自主探究,合作交流”的教学理念,经过实践,与同行交流,与网友互动,最后设计了以下的教学流程: (一)联系生活 谈话导入 苏霍姆林斯基说过:“掌握知识和获取技能的主要动因是良好的情境”,我首先让学生欣赏牡丹江市的城市风光图,再引导学生们观察规化部门为学校设计的效果图,然后以比较图形的面积的活动引入新课。这样的设计,既复习了旧知,为接下来学习平行四边形的面积埋下了伏笔,又让学生通过欣赏家乡的风光,培养了学生热爱家乡的思想感情。 (二)自主探究 学习新知 为了实现“以学生的发展为本,让学生成为真正的学习的主人”这一目的,我将此环节设计为三个活动: 1、数格子--计算平行四边形面积。 2、转化法--推导平行四边形面积计算公式。 3、字母法--表示平行四边形的面积。结果课后感觉虽然这样的计算在实际教学时平稳没有争议,但是学生的思维空间没有得到拓展,也有很多网友建议这样的设计教师不能真正的做到大胆放手,总是牵着学生走。于是,我细致地浏览了IP资源、光盘资源、育龙网资源,并借助网友的帮助,经过再设计,最后将数格子和转化法有机整合为一个环节,将此环节设计为两个活动。 活动一:自主探究计算平行四边形面积的方法 这是本课的重点,也是难点,为了突破这一难点,我首先让学生先猜一猜两个花坛的大小,学生各抒己见,答案不一,然后我顺势鼓励学生通过手中学具采用剪一剪、拼一拼、摆一摆的方法,通过小组自主合作,尝试的探究新知,在探究的过程中,鼓励学生用多种方法大胆尝试,教师并给予适当的指导和点拨,让孩子真正的感受到探究新知的乐趣,并能总结出平行四边形面积计算的方法。为了让学生把抽象的知识形象化,在学生汇报之后又将转化过程设计成课件进行演示,并组织学生讨论,在以上的`剪法中有什么共同特点?为什么要沿高剪开?让学生不仅理解沿高剪开的必要性和合理性,还能进一步强化了平行四边形面积的公式推导过程。学生在动手操作、动流、动脑思考等活动中主动的探究出了新知,也很好的突破了教学重难点。 活动二:字母法--表示平行四边形的面积计算公式 五年级的学生已经有了一定的自学能力,这一环节,我放手让学生自学平行四边形的面积计算公式的字母表示法。 通过放手让学生自己观察、探究得出结论,将直观操作和间接说理结合起来,既培养了学生的推理意识和能力,又使学生掌握图形转化的思想方法。 五、实践应用 巩固新知 练习是学生巩固知识,形成技能的手段。本环节共经过两次调整,第一次设计中的练习,形式比较单一,而且没有梯度。为了弥补不足,体现练习的多元化,所以,第二次将练习调整为四个不同层次的练习。这样设计由浅入深,先易后难,不仅让学生进一步深化所学知识,学生的思维也得以充分的发展。 平行四边形的面积教学设计 6教学目标: 1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。 2.通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。 3.培养学生的合作意识,初步渗透平移和转化的思想。 教学重点: 探索并掌握平行四边形的面积计算方法。 教学难点: 理解平行四边形面积计算公式的推导过程。 教具准备: 一个长方形、一个平行四边形,PPT课件一套。 学具准备: 平行四边形、剪刀、三角板。 一、以旧引新,激起质疑 1.同学们,我们以前认识了很多平面图形,你能说出它们的名字吗? 2.老师这里有两张纸,猜一猜那张纸大一些?我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题) 二、动手操作,探究方法 (一)利用方格,初步探究 1.下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧! 2.学生独立数出平行四边形和长方形的面积。 3.谁来说说你数的结果?学生汇报 4.你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现? 你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。 我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢? (二)动手操作,推导公式 1.动手操作 a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变? b.静静地想,想好了吗? c.动手操作,把这个平行四边形变成以前学过的图形。 d.谁来说说,你把平行四边形变成了什么图形,怎么变的? 2.合作探究 a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么? b. 小组讨论 c. 汇报。 3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢? (三)指导点拨,总结方法 刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢? 我们把平行四边形变成长方形的`这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。 孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题! 例1.读题后独立解答一生板演 师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗? 三、解决问题,拓展延伸 1、练习十五1题。 2、练习十五3题。 3、下面两个平行四边形,它们的面积一样大吗? 4、你能算出芸芸家这块菜地的面积吗? 四、全课小结,完善新知 这节课你有什么收获? 这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起! 平行四边形的面积教学设计 7教学内容:九年义务教育六年制小学数学第九册70页一72页。 教学目的: 1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。 2.培养学生初步的逻辑思维能力和空间观念。 3.结合教材渗透转化思想。 教学重点:掌握和运用平行四边形面积计算公式。 教学难点:平行四边形面积公式的推导过程。 课前准备:投影器、长方形框架、平行四边形纸片等。 教学过程: 一、课前谈话: 师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的`重量的? 曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗? 二、创设生活情境 这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的判断方法吗? 学生自由发言。 师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天我们就一起来探讨平行四边形的面积。(板书) 三、探究新知 1、自主探索 出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,我们比比看,哪个小组的同学最先知道这个平行四边形的面积! 学生以小组为单位开展活动,教师巡视。 汇报、反馈:都有结果了吧,哪个小组先来汇报? 各小组派代表发言。 2、对比分析 每个小组都得到了这个平行四边形的面积,我们一起来看看这些方法。课件展示学生的主要方法。 3、归纳总结 你们真聪明,能把没有学过的知识转化成学过的知识,现在这个长方形的面积怎样求?它的长和宽与原来平行四边形的什么有关? 想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求平行四边形的面积了吧?谁来说一说? 四、巩固运用 我们会计算了平行四边形的面积,接下来我们就到生活中去看看吧! 1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧? 2、P82看第2题。 3、课件出示:P83第题,这两个平行四边形的面积相等吗?为什么? 五、小结:今天大家学得开心吗?你们都有哪些收获? 出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么 平行四边形的面积教学设计 8教学目标: 1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积. 2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力. 3.对学生进行辩诈唯物主义观点的启蒙教育. 教学重点: 理解公式并正确计算平行四边形的面积. 教学难点: 理解平行四边形面积公式的推导过程. 学具准备: 每个学生准备一个平行四边形。 教学过程: 1、什么是面积? 2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢? 一、导入新课 根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。 二、讲授新课 (一)数方格法 用展示台出示方格图 1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米) 2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。 2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么? 小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。 (二)引入割补法 以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。 (三)割补法 1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形? 2、然后指名到前边演示。 3、教师示范平行四边形转化成长方形的过程。 刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。 ①先沿着平行四边形的高剪下左边的直角三角形。 ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。 ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。 请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。) 4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。) ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么? ②这个长方形的长与平行四边形的底有什么样的关系? ③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。 5、引导学生总结平行四边形面积计算公式。 这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽) 那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。) 6、教学用字母表示平行四边形的面积公式。 板书:S=a×h,告知S和h的读音。 说明在含有字母的式子里,字母和字母中间的'乘号可以写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。 (6)完成第81页中间的“填空”。 7、验证公式 学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。 条件强化:求平行四边形的面积必须知道哪两个条件?(底和高) (四)应用 1、学生自学例1后,教师根据学生提出的问题讲解。 2、判断,并说明理由。 (1)两个平行四边形的高相等,它们的面积就相等 (2)平行四边形底越长,它的面积就越大 3、做书上82页2题。 三、体验 今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的? 四、作业 练习十五第1题。 五、板书设计 平行四边形面积的计算 长方形的面积=长×宽 平行四边形的面积=底×高 S=a×hS=ah或S=ah 平行四边形的面积教学设计 9教学目标: 1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。 2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。 3、培养学生的小组合作意识,发展学生的空间观念。 教学重难点: 1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。 2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。 教具准备: 教学课件、平行四边形教具和学具、剪刀等。 教学过程: 一、情境引入 师:这节课老师将和大家一起学习一个新知识,同学们有信心吗? 师:看到同学们精神饱满的样子,老师也有信心。让我们一起努力吧! 师:首先老师想考考大家,知道的同学请举手。 t1:你们认识哪些平面图形? t2:你们认识老师手中的图形吗? t3:(出示课件2)请同学们观察学校门前的两个花坛,它们分别是什么形状? t4:哪个花坛面积大?你会计算它们的面积吗?(出示课件3) 师小结:(板书;长方形的面积=长×宽) 这节课我们就来学习平行四边形的面积。(板书:平行四边形的面积) 二、探究建模 (一)数格子法(出示课件4) 1、师:前面我们已经知道可以用数格子的方法得到一个图形的面积,看大屏,请同学们用数格子的方法数数出这两个图形的面积。注意一个方格代表1平方米,不满一格的都按半格计算。 t1:谁来汇报一下你数的结果? 2、师小结:刚才,我们用数格子的方法得到了这个平行四边形的面积,可是,在日常生活中,是不是每一个平行四边形的面积都有方格让我们去数呢?(不是)所以说数方格的方法也不是任何时候都适用的。如果平行四边形的面积也能像长方形一样有它的面积计算公式就更好了,对不对? 那么在研究这个问题之前,让我们看大屏幕,继续观察这两个图形,并且完成第80页下方的表格。 t2:通过这个表格,你发现了什么呢? 3、师小结:是的,通过这个表格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。 t3:根据你的发现,请同学们做个大胆的猜测,平行四边形的面积可以怎样计算?(师板书学生的猜测) (二)转化法 1、用画图的方法验证猜想一。(平行四边形的面积=邻边之积) 学生画图,同桌交流,教师演示。 师小结:可见“平行四边形的面积=邻边之积”的.猜测是不对的。 2、用“剪—平移—拼”的方法验证猜想二(平行四边形的面积=底×高)学生剪拼,同桌讨论,课件演示。(出示课件5) t1:拼成的长方形和原来的平行四边形相比,什么变了,什么没有变? t2:再看看,转化后的长方形的长与平行四边形的底,转化后的长方形的宽与平行四边形的高有什么关系? 生:转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高。 t3:那么,现在同学们知不知道平行四边形的面积可以怎样计算呢? 生:平行四边形的面积=底×高 t4:有没有不同的验证方法呢?(出示课件6) 师小结:其实,我们沿着平行四边形的任意一条高都能将一个平行四边形转化成长方形,因为转化后的长方形的长等于平行四边形的底,转化后的长方形的宽等于平行四边形的高,所以,平行四边形的面积=底×高 (三)整理结论 1、师:我们一起读一下我们发现的结论。 刚才同学们不仅用不同的方法验证了两个猜想,并且用了转化的方法,真是了不起。 2、师:现在请同学们翻开书,自己看书学习81页倒数第2自然段的内容。 3、师:你学到了些什么? 4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah 师:有了平行四边形的面积计算公式,现在同学们就可以用它来计算了。 t5:现在同学们能知道这两个花坛哪个的面积大了吗?(出示课件7) 师小结:同学们学得真不错!我们鼓掌奖励自己吧! 师:下面老师再出几个题考考大家,敢挑战吗? 三、解释应用 1、计算平行四边形车位面积。(出示课件8) t6:要计算一个平行四边形的面积需要知道哪些条件? t7:(教师画图,平行四边形的底和高不对应)你能计算书这个平行四边想的面积吗? 2、选择条件计算平行四边形的面积。(出示课件9) 3、终极挑战。(出示课件10) 4、奖励题。知道平行四边形的面积和底,求高。(出示课件11) 四、课堂总结 通过这节课的学习你有哪些新的收获? 平行四边形的面积教学设计 10教学内容: 人教版小学数学教材五年级上册第87~88页例1及相关练习。 教学目标: 1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。 2.能正确地应用公式计算平行四边形的面积。 教学重点: 探索并掌握平行四边形面积计算公式。 教学难点: 理解平行四边形面积计算公式的推导过程,体会转化思想。 教学准备: 课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。 教学过程: 一、激趣引入 1、游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗? 你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。) 2、(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识? 3、揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢? 【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。 二、新知探究 (一)合理猜想 1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。 预设1:邻边相乘; 预设2:底边乘高。 2.同桌互相说一说,你同意哪一种猜想?理由是什么? 3.反馈想法。 预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。 预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。 (二)验证猜想 同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢? 1、邻边相乘的想法 教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化? 学生:边的长短没变,高和面积变了。 教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗? 教师:现在谁能说说这种拉的方法合理吗?为什么? 教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。 【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。 2、底边乘高的想法 (1)数格子验证 教师:这里的一些不是整格的怎么数? 学生:可以通过拼一拼,变成整格的再数。 教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少? (2)剪拼验证 教师:谁来展示你是如何进行剪接的? 学生:沿高剪下,补到另一边,拼成长方形。 教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm) 那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。 【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。 (三)公式推导 教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分? 学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。 教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢? 教师:如果我们用 表示平行四边形的面积,用 表示平行四边形的底,用 表示平行四边形的高,那么平行四边形的面积计算公式可以用 来表示。 (四)回顾总结 回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的? 【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的'计算公式。 三、练习巩固 (一)基础练习 1.完成练习十九第1题。 (1)请学生计算,并进行订正。 (2)反馈小结:在计算时,可以先写出面积公式,再进行计算。 2.完成练习十九第2题。 (1)请学生计算,并进行反馈。 (2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。 【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。 (二)拓展提升 一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少? 1.引导学生算出它的面积; 2.请学生在方格纸上画出这样的平行四边形; 3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。 4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。 5.思考:面积相等的平行四边形一定等底等高吗?为什么? 【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。 四、总结提示 教师:回忆一下,今天这节课有什么收获? 总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。 【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。