标题 | 六上数学知识点归纳整理 |
范文 | 六上数学知识点归纳整理 在平日的学习中,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。那么,都有哪些知识点呢?下面是小编精心整理的六上数学知识点归纳整理,希望对大家有所帮助。 六上数学知识点归纳整理11.根据方向和距离可以确定物体在平面图上的位置。 2.在平面图上标出物体位置的方法: 先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。 3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。 4.绘制路线图的方法: (1)确定方向标和单位长度。 (2)确定起点的位置。 (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。 (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。 六上数学知识点归纳整理2圆 一、 认识圆 1、圆的定义:圆是由曲线围成的一种平面图形。 2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。 一般用字母O表示。它到圆上任意一点的距离都相等. 3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。 4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。 直径是一个圆内最长的线段。 5、圆心确定圆的位置,半径确定圆的大小。 6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。 7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 。 用字母表示为:d=2r或r = 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。 折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线) 9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。 10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是: 长方形 只有3条对称轴的图形是: 等边三角形 只有4条对称轴的图形是: 正方形; 有无数条对称轴的图形是: 圆、圆环。 二、圆的周长 1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。 2、圆周率实验: 在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。 发现一般规律,就是圆周长与它直径的`比值是一个固定数(π)。 3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。 用字母π(pai) 表示。 (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。 圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。 (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。 (3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 4、圆的周长公式: C= πd d = C ÷π 或C=2π r r = C ÷ 2π 5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。 在一个长方形里画一个的圆,圆的直径等于长方形的宽。 6、区分周长的一半和半圆的周长: (1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r (2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r 六上数学知识点归纳整理3(一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 “分数乘整数”指的是第二个因数必须是整数,不能是分数。 2、一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) (二)分数乘法计算法则: 1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。 (1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。 2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母) (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。 (2)分数化简的方法是:分子、分母同时除以它们的公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。 (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c 一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。 (四)分数混合运算 1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。