标题 | 高二数学必修三知识点总结 |
范文 | 高二数学必修三知识点总结 在平凡的学习生活中,不管我们学什么,都需要掌握一些知识点,知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。还在为没有系统的知识点而发愁吗?以下是小编整理的高二数学必修三知识点总结,欢迎阅读,希望大家能够喜欢。 高二数学必修三知识点总结11.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法. 2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数. 3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数. 4.秦九韶算法是一种用于计算一元二次多项式的值的方法. 5.常用的排序方法是直接插入排序和冒泡排序. 6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k. 7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果. 8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数. 高二数学必修三知识点总结2一、学习目标: 知识与技能:理解直线与平面、平面与平面平行的'性质定理的含义,并会应用性质解决问题 过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理 情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法 二、学习重、难点 学习重点:直线与平面、平面与平面平行的性质及其应用 学习难点:将空间问题转化为平面问题的方法, 三、学法指导及要求: 1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。 2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题 四、知识链接: 1.空间直线与直线的位置关系 2.直线与平面的位置关系 3.平面与平面的位置关系 4.直线与平面平行的判定定理的符号表示 5.平面与平面平行的判定定理的符号表示 五、学习过程: A问题1: 1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系? (观察长方体) 2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行? (可观察教室内灯管和地面) A问题2:一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能? A问题3:如果一条直线与平面α平行,在什么条件下直线与平面α内的直线平行呢? 由于直线与平面α内的任何直线无公共点,所以过直线的某一平面,若与平面α相交,则直线就平行于这条交线 B自主探究1:已知:∥α,β,α∩β=b。求证:∥b。 直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 符号语言: 线面平行性质定理作用:证明两直线平行 思想:线面平行线线平行 高二数学必修三知识点总结31.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。