标题 | 数学数列的极限教案 |
范文 | 数学数列的极限教案范文(通用10篇) 作为一名默默奉献的教育工作者,往往需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的数学数列的极限教案范文,仅供参考,希望能够帮助到大家。 数学数列的极限教案 1一、教材分析 两个重要极限是在学生系统学习了数列极限、函数极限以及函数极限运算法则的基础上进行研究的,它在求函数极限中起着重要作用,也是今后研究各种基本初等函数求导公式的工具,所以两个重要极限应重点研究。 二、学情分析 一方面,学生已经学习了有界函数和无穷小乘积的极限,他们可以通过类比的方法研究这第一个重要极限,具备了接受新知识的基础;另一方面,学生基础比较薄弱,对以前所学的三角函数关系、二倍角公式等运用还不够熟练,所以现在在角的转化上面还存在一定困难。 三、教学目标 根据以上两点分析并结合本节教材的'特点,现把本节课的目标、重点、难点定为: 教学目标: (1)知识与技能:使学生掌握重要极限公式的特点及其变形式,并能运用其求某些函数极限; (2)过程与方法:提高学生的自学意识,培养学生类比、观察、归纳、举一反三等方面的能力; (3)情感态度与价值观:通过对重要极限公式的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯,同时激发学生的学习兴趣。 教学重点与难点: 重点:重要极限公式及其变形式 难点:的灵活应用 四、教法与学法的选择 本节课我是以学案为载体,采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 学法上以课前自学为主要方式,在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,让学生自己出题,把思路方法和需要解决的问题弄清。 五、教学环节的设计 (1)课前尝试 利用学案导学,让学生明确课前要做的作业,课堂采用的方法,需要达到的要求,在尝试练习中,让学生通过练习,类比,引入新课。 (2)课堂探究 通过学生探究讨论得出第一个重要极限以及这个极限公式的特点,再由学生举例说明这个重要极限类似的其他形式来认清它的结构特征,讲解这个重要极限的应用时,让学生自己尝试举例,从而使学生达到能够熟练应用举一反三的目的。 (3)课堂巩固 学生在课堂练习中巩固所学内容,从而提升对这一重要极限的认识。 (4)课后拓展 在课后拓展中让学生原有的知识网络的三角函数关系、二倍角公式和函数极限这些没有直接关系的知识,通过这第一个重要极限及其运用牢牢地联系在了一起。 数学数列的极限教案 2教学目标 1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题. (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念; (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项; (3)通过通项公式认识等比数列的性质,能解决某些实际问题. 2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质. 3.通过对等比数列概念的'归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度. 教材分析 (1)知识结构 等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用. (2)重点、难点分析 教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用. ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点. ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点. ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点. 教学建议 (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用. (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义. (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解. (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象. (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现. (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 数学数列的极限教案 3教学理念:数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的参与,是促进学生良好的认知结构,培养能力,全面提高素质的关键。数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。 设计思想:本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。 一、教材分析: 教学内容: 高中数学必修第五模块第二章第二节,等差数列,两课时内容,本节是第一课时,研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。 教学地位: 本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 教学重点: 理解等差数列概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题,体会等差数列与一次函数之间的关系。 教学难点: 对等差数列概念的理解及从函数、方程角度理解通项公式,概括通项公式推导过程中体现出的数学思想方法。 二、学习者分析: 高二学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。 三、教学目标: 知识目标: 理解等差数列定义,掌握等差数列的通项公式。 能力目标: 培养学生观察、归纳能力,在学习过程中,体会数形结合思想、归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。 情感目标: ①通过个性化的学习增强学生的自信心和意志力。 ②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。 ③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。 四、教法和学法的分析: 通过探究式教学方法充分利用现实情景,尽可能的增加教学过程的趣味性、实践性。利用多媒体课件和实例等丰富学生的学习资源,强调学生动手操作试验和主动参与,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。 在学法上,引导学生多角度,多层面认识事物,学会探究。教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的`动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式让学生学会自我调适,自我选择。 五、教学媒体和教学技术的选用 多媒体计算机和几何画板 通过计算机模拟演示,使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注意力也容易集中,符合教学论中的直观性原则和可接受性原则。本节课打破传统的一言堂的格局代之以人为本、民主、开放、特色和建立在信息网络平台上的现代教学格局。 六、教学程序: (一)设置问题,引导发现形成概念w。 师:看大屏幕。 情景1(播放奥运会女子举重场面) 2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63 情景2水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m)18,15.5,13,10.5,8,5.5 情景3我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率存期) 时间年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税)各年末本利和(单位:元)10072,10144,10216,10288,10360 师:思考上述各组数据反映了什么样的信息? 每行数有何共同特点?请同学们互相讨论。 (学生纷纷议论,有的几个人在一起商量) (从宏观上:情景1让学生体验成功申办奥运会的喜悦心情,激发勇于拼搏的坚强意志;情景2让学生认识到保护水资源,保护生态平衡的意识;情景3倡导节约意识,纳税意识。) 从微观上,数学研究的对象是数,我们抛开具体的背景,从表格中抽象出一般数列。 48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360 师:(启发学生)你能用数学语言来描述上述数列的共同特征吗? 学生1:后一项与它的前一项的差等于常数。 师:反例:1,3,5,6,12,这样的数列特征和上述数列的特征一样吗? 学生1:不一样,要加上同一个常数。 学生2:每一项与它的前一项的差等于同一个常数。 师:反例:1,3,4,5,6,7,这样的数列特征和上述数列的特征一样吗? 学生2:不一样,必须从第二项开始。 学生3:从第二项起,每一项与它的前一项的差等于同一个常数。 (教师把学生的回答写在黑板上,通过反例,使学生深刻理解几组数列的共同特征: = 1 GB3 ①同一个常数;= 2 GB3 ②从第二项起) 师:能不能用数学语言表示? 学生4: 师:等价吗? 学生4:应加上(d是常数),. (让学生充分讨论,注意文字语言与数学符号语言的转化的严谨性) 师:对式子进行变形可得。 这样的数列在生活中的例子,谁能再举几个? 学生5:某剧场前8排的座位数分别是 52,50,48,46,44,42,40,38. 学生6:全国统一鞋号中成年女鞋的各种尺码分别是 21,21.5,22,22.5,23,23.5,24,24.5,25 学生7:马路边的路灯,相邻两盏之间的距离构成的数列。 师:如何用数列表示? 学生8:设相邻两盏之间的距离为a,该数列为 a,a,a,a,……,为常数列,即常数列都具有这种特征。 (让学生举例,加深感性认识) 师:满足这种特征的数列很多,我们有必要为这样的数列取一个名字? 学生(共同):等差数列。 师:(学生叙述,板书定义) 一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d为公差,a1为数列的首相。 提出课题《等差数列》 对定义进行分析,强调:= 1 GB3 ①同一个常数;= 2 GB3 ②从第二项起。注意对概念严谨性的分析。 师:回到表格中,分别说出它们的公差。 学生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72. 师:在计算年末本利和的问题中求时,能不能不按本利和=本金(1+利率存期) 求而按数列的特征求呢? 学生:若能求得通项公式,问题就很好解决。 (再提出问题,引导发现求通项公式的必要性) (二)启发、引导推出等差数列的通项公式 师:把问题推广到一般情况。若一个数列是等差数列,它的公差是d,那么数列的通项公式是什么? 启发学生:(归纳、猜想)可用首相与公差表示数列中任意一项。 师:从第几项开始归纳的? 学生10:第二项,所以n≥2。 数学数列的极限教案 4【教学目标】 知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。 能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的'能力。 情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。 【教学重点】 等比数列定义的归纳及运用。 【教学难点】 正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列 【教学手段】 多媒体辅助教学 【教学方法】 启发式和讨论式相结合,类比教学. 【课前准备】 制作多媒体课件,准备一张白纸,游标卡尺。 【教学过程】 【导入】 复习回顾:等差数列的定义。 创设问题情境,三个实例激发学生学习兴趣。 1. 利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0) 2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列 15 ,15×0.9 ,15×0.92 ,15×0.93 …15×0.95。 3. 复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052…10000×1.0512. 学生探究三个数列的共同点,引出等比数列的定义。 【新课讲授】 由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。 等差数列: 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式: an+1-an=d 等比数列: 一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式: 知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。 在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析. 数学数列的极限教案 5一、教材分析 1、教学目标: A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想; B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 2、教学重点和难点 ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。 二、教法分析 采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、教学程序 本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。 (一)复习引入: 1.全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是 21,22,23,24,25, 2.某剧场前10排的座位数分别是: 38,40,42,44,46,48,50,52,54,56。 3.某长跑运动员7天里每天的训练量(单位:)是: 7500,8000,8500,9000,9500,10000,10500。 共同特点: 从第2项起,每一项与前一项的差都等于同一个常数。 (二)新课探究 1、给出等差数列的概念: 如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调: ① “从第二项起”满足条件; ②公差d一定是由后项减前项所得; ③公差可以是正数、负数,也可以是0。 2、推导等差数列的'通项公式 若等差数列{an }的首项是 ,公差是d, 则据其定义可得: - =d 即: = +d – =d 即: = +d = +2d – =d 即: = +d = +3d 进而归纳出等差数列的通项公式: = +(n-1)d 此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法: – =d – =d – =d – =d 将这(n-1)个等式左右两边分别相加,就可以得到 – = (n-1) d即 = +(n-1) d 当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。 接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n-1)×2 , 即 =2n-1 以此来巩固等差数列通项公式运用 (三)应用举例 这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。 例1 (1)求等差数列8,5,2,…的第20项;(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项? 第二问实际上是求正整数解的问题,而关键是求出数列的通项公式 例2 在等差数列{an}中,已知 =10, =31,求首项 与公差d。 在前面例1的基础上将例2当作练习作为对通项公式的巩固 例3 梯子的最高一级宽33c,最低一级宽110c,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。 (四)反馈练习 1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。 2、若数列{ } 是等差数列,若 = ,(为常数)试证明:数列{ }是等差数列 此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。 (五)归纳小结 (由学生总结这节课的收获) 1.等差数列的概念及数学表达式. 强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数 2.等差数列的通项公式 = +(n-1) d会知三求一 (六)布置作业 必做题:课本P114 习题3.2第2,6 题 选做题:已知等差数列{ }的首项 = -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求) 四、板书设计 在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。 数学数列的极限教案 6一、课前检测 1.在数列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求数列{bn}的前n项的和. 解:由已知得:an=1n+1(1+2+3++n)=n2, bn=2n2n+12=8(1n-1n+1) 数列{bn}的前n项和为 Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1. 2.已知在各项不为零的数列 中, (1)求数列 的通项; (2)若数列 满数列 的前 项的和为 ,求 二、知识梳理 (一)前n项和公式Sn的定义:Sn=a1+a2+an。 (二)数列求和的方法(共8种) 5.错位相减法:适用于差比数列(如果 等差, 等比,那么 叫做差比数列)即把每一项都乘以 的公比 ,向后错一项,再对应同次项相减,转化为等比数列求和。 如:等比数列的前n项和就是用此法推导的. 解读: 6.累加(乘)法 解读: 7.并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和. 形如an=(-1)nf(n)类型,可采用两项合并求。 解读: 8.其它方法:归纳、猜想、证明;周期数列的求和等等。 解读: 三、典型例题分析 题型1 错位相减法 例1 求数列 前n项的和. 解:由题可知{ }的通项是等差数列{2n}的通项与等比数列{ }的通项之积 设 ① ② (设制错位) ①-②得 (错位相减) 变式训练1 (2010昌平模拟)设数列{an}满足a1+3a2+32a3++3n-1an=n3,nN*. (1)求数列{an}的通项公式; (2)设bn=nan,求数列{bn}的前n项和Sn. 解:(1)∵a1+3a2+32a3++3n-1an=n3, ① 当n2时,a1+3a2+32a3++3n-2an-1=n-13. ② ①-②得3n-1an=13,an=13n. 在①中,令n=1,得a1=13,适合an=13n, an=13n. (2)∵bn=nan,bn=n3n. Sn=3+232+333++n 3n, ③ 3Sn=32+233+334++n 3n+1. ④ ④-③得2Sn=n 3n+1-(3+32+33++3n), 即2Sn=n 3n+1-3(1-3n)1-3, Sn=(2n-1)3n+14+34. 小结与拓展: 题型2 并项求和法 例2 求 =1002-992+982-972++22-12 解: =1002-992+982-972++22-12=(100+ 99)+(98+97)++(2+1)=5050. 变式训练2 数列{(-1)nn}的前2010项的和S2 010为( D ) A.-2010 B.-1005 C.2010 D.1005 解:S2 010=-1+2-3+4-5++2 008-2 009+2 010 =(2-1)+(4-3)+(6-5)++(2 010-2 009)=1 005. 小结与拓展: 题型3 累加(乘)法及其它方法:归纳、猜想、证明;周期数列的求和等等 例3 (1)求 之和. (2)已知各项均为正数的`数列{an}的前n项的乘积等于Tn= (nN*), 则数列{bn}的前n项和Sn中最大的一项是( D ) A.S6 B.S5 C.S4 D.S3 解:(1)由于 (找通项及特征) (2)D. 变式训练3 (1)(2009福州八中)已知数列 则 , 。答案:100. 5000。 (2)数列 中, ,且 ,则前2010项的和等于( A ) A.1005 B.2010 C.1 D.0 小结与拓展: 四、归纳与总结(以学生为主,师生共同完成) 以上一个8种方法虽然各有其特点,但总的原则是要善于改变原数列的形式结构,使其能进行消项处理或能使用等差数列或等比数列的求和公式以及其它已知的基本求和公式来解决,只要很好地把握这一规律,就能使数列求和化难为易,迎刃而解。 数学数列的极限教案 7一、教学内容分析 本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。 二、学生学习情况分析 教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。 三、设计思想 1、教法 ⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 ⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2、学法 引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。 用多种方法对等差数列的通项公式进行推导。 在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。 四、教学目标 通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。 五、教学重点与难点 重点: ①等差数列的`概念。 ②等差数列的通项公式的推导过程及应用。 难点: ①理解等差数列“等差”的特点及通项公式的含义。 ②理解等差数列是一种函数模型。 关键: 等差数列概念的理解及由此得到的“性质”的方法。 六、教学过程 教学环节情境设计和学习任务学生活动设计意图创设情景在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?倾听课堂引入探索研究由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,… 水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5观察分析,发表各自的意见引向课题发现规律思考:同学们观察一下上面的这两个数列: 0,5,10,15,20,…… ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?观察分析并得出答案: 引导学生观察相邻两项间的关系,得到: 对于数列①,从第2项起,每一项与前一项的差都等于5; 对于数列②,从第2项起,每一项与前一项的差都等于-2.5; 由学生归纳和概括出,以上两个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。通过分析,激发学生学习的探究知识的兴趣,引导揭示数列的共性特点。 总结提高[等差数列的概念] 对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义: 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。 这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上两组等差数列,它们的公差依次是5,5,-2.5。学生认真阅读课本相关概念,找出关键字。通过学生自己阅读课本,找出关键字,提高学生的阅读水平和思维概括能力,学会抓重点。提问:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A 所以就有让学生参与到知识的形成过程中,获得数学学习的成就感。由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。 9是7和11的等差中项,5和13的等差中项。 看来,从而可得在一等差数列中,若m+n=p+q 则深入探究,得到更一般化的结论引领学习更深入的探究,提高学生的学习水平。 总结提高[等差数列的通项公式] 对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。 我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这三组等差数列的通项公式。由学生经过分析写出通项公式: 数学数列的极限教案 8[教学目标] 1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。 2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。 3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的'好习惯。 [教学重难点] 1.教学重点:等差数列的概念的理解,通项公式的推导及应用。 2.教学难点: (1)对等差数列中“等差”两字的把握; (2)等差数列通项公式的推导。 [教学过程] 一、课题引入 创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子) 二、新课探究 (一)等差数列的定义 1、等差数列的定义 如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。 (1)定义中的关健词有哪些? (2)公差d是哪两个数的差? (二)等差数列的通项公式 探究1:等差数列的通项公式(求法一) 如果等差数列首项是,公差是,那么这个等差数列如何表示?呢? 根据等差数列的定义可得: 因此等差数列的通项公式就是:, 探究2:等差数列的通项公式(求法二) 根据等差数列的定义可得: 将以上-1个式子相加得等差数列的通项公式就是:, 三、应用与探索 例1、(1)求等差数列8,5,2,…,的第20项。 (2)等差数列-5,-9,-13,…,的第几项是–401? (2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。 例2、在等差数列中,已知=10,=31,求首项与公差d. 解:由,得。 在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。 巩固练习 1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。 2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。 四、小结 1.等差数列的通项公式: 公差; 2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量; 3.判断一个数列是否为等差数列只需看是否为常数即可; 4.利用从特殊到一般的思维去发现数学系规律或解决数学问题. 五、作业: 1、必做题:课本第40页习题2.2第1,3,5题 2、选做题:如何以最快的速度求:1+2+3+???+100= 数学数列的极限教案 9教学目标 1、通过教学使学生理解等比数列的概念,推导并掌握通项公式。 2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力。 3、培养学生勤于思考,实事求是的精神,及严谨的科学态度。 教学重点,难点 重点、难点是等比数列的定义的归纳及通项公式的推导。 教学用具 投影仪,多媒体软件,电脑。 教学方法 讨论、谈话法。 教学过程 一、提出问题 给出以下几组数列,将它们分类,说出分类标准。(幻灯片) ①-2,1,4,7,10,13,16,19, ②8,16,32,64,128,256, ③1,1,1,1,1,1,1, ④-243,81,27,9,3,1, ⑤31,29,27,25,23,21,19, ⑥1,-1,1,-1,1,-1,1,-1, ⑦1,-10,100,-1000,10000,-100000, ⑧0,0,0,0,0,0,0, 由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)。 二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的`另一类数列等比数列。(这里播放变形虫分裂的多媒体软件的第一步) 判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由. (1)1, 4, 16, 32. (2)0, 2, 4, 6, 8. (3)1,-10,100,-1000,10000. (4)81, 27, 9, 3, 1. (5)a, a, a, a, a. 讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利 用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。例题二 求出下列等比数列中的未知项: (1)2, a, 8; (2)-4, b, c,? 已知数列2, x, d, y,8.是等比数列 ①证明数列2, d, 8.仍是等比数列. ②求未知项d. 通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。 练习 判断下列数列是等差数列还是等比数列? (1)22,2,1,2-1, 2-2 。 (2)3,34,37, 310 。 引申:已知数列{an}是等差数列,而bn?2n证明数列{bn}是等比数列。 由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。 【课堂小结】 由学生通过一堂课的学习,做个简单的归纳小结。 1理解。等比数列的定义,判断或证明数列是否为等比数列要用定义判断 2、等比数列公比q≠0,任意一项都不为零。 3、学习等比数列可以对照等差数列类比做研究。 【作业】 1、书p48. No.1,2; 数学数列的极限教案 10教学目标 1.理解数列概念,了解数列和函数之间的关系 2.了解数列的通项公式,并会用通项公式写出数列的任意一项 3.对于比较简单的数列,会根据其前几项写出它的个通项公式 4.提高观察、抽象的能力. 教学重点 1.理解数列概念; 2.用通项公式写出数列的任意一项. 教学难点 根据一些数列的`前几项抽象、归纳数列的通项公式. 教学方法 发现式教学法 教具准备 投影片l张(内容见下页) 教学过程 (I)复习回顾 师:上节课我们学习了数列及有关定义,下面先来回顾一下上节课所学的主要内容. 师:[提问]上节课我们学习了哪些主要内容? 生:[回答]数列、项、表示形式、通项公式、数列分类等等. (Ⅱ)讲授新课 师:我们所学知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题. 下面同学们来看此图:钢管堆放示意图(投影片). 生:观察图片,寻其规律,建立数学模型. 模型一:自上而下: 第1层钢管数为4;即:1 4=1+3 第2层钢管数为5;即:2 5=2+3 第3层钢管数为6;即:3 6=3+3 第4层钢管数为7;即:4 7=4+3 第5层钢管数为8;即:5 8=5+3 第6层钢管数为9;即:6 9=6+3 第7层钢管数为10;即:7 10=7+3 若用 表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且 ≤n≤7) 师:同学们运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。 师:同学们再来看此图片,是否还有其他规律可循?(启发学生寻找规律2,建立模型二) 生:自上而下每一层的钢管数都比上一层钢管数多1。 即 依此类推: (2≤n≤7) 师:对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。 一、定义: 递推公式:如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。 说明:递推公式也是给出数列的一种方法。 二、例题讲解 例1:已知数列 的第1项是1,以后的各项由公式 给出,写出这个数列的前5项。 分析:题中已给出 的第1项即 递推公式: 解:据题意可知: 例2:已知数列 中, ≥3) 试写出数列的前4项 解:由已知得 (Ⅲ)课堂练习 生:课本P113练习 1,2,3(书面练习) (板演练习1.写出下面各数列的前4项,根据前4项写出该数列的一个通项公式。 (1) ≥2) (2) ≥3) 师:给出答案,结合学生所做进行评析。 (Ⅳ)课时小结 师:这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解。注意它与通项公式的区别在于: 1. 通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系。 2. 对于通项公式,只要将公式中的n依次取胜,2,3…即可得到相应的项。而递推公式则要已知首项(或前n项),才可求得其他的项。 (V) 课后作业 一、课本P114习题3.1 3,4 二、预习内容:课本P114—P116 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。