标题 | 因式分解教案 |
范文 | 因式分解教案范文合集五篇 作为一位不辞辛劳的人民教师,时常需要编写教案,教案是备课向课堂教学转化的关节点。教案应该怎么写才好呢?以下是小编帮大家整理的因式分解教案5篇,仅供参考,大家一起来看看吧。 因式分解教案 篇1学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力. 学习重点:同底数幂乘法运算性质的推导和应用. 学习过程: 一、创设情境引入新课 复习乘方an的意义:an表示个相乘,即an=. 乘方的结果叫a叫做,n是 问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算? 列式为,你能利用乘方的意义进行计算吗? 二、探究新知: 探一探: 1根据乘方的意义填空 (1)23×24=(2×2×2)×(2×2×2×2)=2(); (2)55×54=_________=5(); (3)(-3)3×(-3)2=_________________=(-3)(); (4)a6a7=________________=a(). (5)5m5n 猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗? 说一说:你能用语言叙述同底数幂的乘法法则吗? 同理可得:amanap=(m、n、p都是正整数) 三、范例学习: 【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x 1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=. 2.计算: (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4. 【例2】:把下列各式化成(x+y)n或(x-y)n的形式. (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x) (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1 四、学以致用: 1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9= ⑷-4444=⑸22n22n+1=⑹y5y2y4y= 2.判断题:判断下列计算是否正确?并说明理由 ⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5(); ⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。 3.计算: (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4 (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2 (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2 4.解答题: (1)已知xm+nxm-n=x9,求m的值. (2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子? 因式分解教案 篇2教学目标 1、 会运用因式分解进行简单的多项式除法。 2、 会运用因式分解解简单的方程。 二、教学重点与难点教学重点: 教学重点 因式分解在多项式除法和解方程两方面的应用。 教学难点: 应用因式分解解方程涉及较多的推理过程。 三、教学过程 (一)引入新课 1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y (二)师生互动,讲授新课 1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3 一个小问题 :这里的x能等于3/2吗 ?为什么? 想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习 合作学习 想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0 试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等练习:课本P162课内练习2 做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么? 教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx (三)梳理知识,总结收获因式分解的两种应用: (1)运用因式分解进行多项式除法 (2)运用因式分解解简单的方程 (四)布置课后作业 作业本6、42、课本P163作业题(选做) 因式分解教案 篇3因式分解 教材分析 因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。 教学目标 认知目标:(1)理解因式分解的概念和好处 (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。 潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。 情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的'精神和实事求是的科学态度。 目标制定的思想 1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。 2.课堂教学体现潜力立意。 3.寓德育教育于教学之中。 教学方法 1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。 2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。 3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。 4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。 5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。 教学过程安排 一、提出问题,创设情境 问题:看谁算得快?(计算机出示问题) (1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400 (2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000 (3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0 二、观察分析,探究新知 (1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案) (2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式? a2—2ab+b2=(a—b)2② 20x2+60x=20x(x+3)③ (3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。 板书课题:§7。1因式分解 1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。 三、独立练习,巩固新知 练习 1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示) ①(x+2)(x—2)=x2—4 ②x2—4=(x+2)(x—2) ③a2—2ab+b2=(a—b)2 ④3a(a+2)=3a2+6a ⑤3a2+6a=3a(a+2) ⑥x2—4+3x=(x—2)(x+2)+3x ⑦k2++2=(k+)2 ⑧x—2—1=(x—1+1)(x—1—1) ⑨18a3bc=3a2b·6ac 2.因式分解与整式乘法的关系: 因式分解 结合:a2—b2=========(a+b)(a—b) 整式乘法 说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。 结论:因式分解与整式乘法正好相反。 问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗? (如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1) 由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等) 四、例题教学,运用新知: 例:把下列各式分解因式:(计算机演示) (1)am+bm(2)a2—9(3)a2+2ab+b2 (4)2ab—a2—b2(5)8a3+b6 练习2:填空:(计算机演示) (1)∵2xy=2x2y—6xy2 ∴2x2y—6xy2=2xy (2)∵xy=2x2y—6xy2 ∴2x2y—6xy2=xy (3)∵2x=2x2y—6xy2 ∴2x2y—6xy2=2x 五、强化训练,掌握新知: 练习3:把下列各式分解因式:(计算机演示) (1)2ax+2ay(2)3mx—6nx(3)x2y+xy2 (4)x2+—x(5)x2—0。01(6)a3—1 (让学生上来板演) 六、变式训练,扩展新知(计算机演示) 1。若x2+mx—n能分解成(x—2)(x—5),则m=,n= 2.机动题:(填空)x2—8x+m=(x—4),且m= 七、整理知识,构成结构(即课堂小结) 1.因式分解的概念因式分解是整式中的一种恒等变形 2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。 3.利用2中关系,能够从整式乘法探求因式分解的结果。 4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。 八、布置作业 1.作业本(一)中§7。1节 2.选做题:①x2+x—m=(x+3),且m=。 ②x2—3x+k=(x—5),且k=。 评价与反馈 1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。 2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。 3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。 4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。 5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。 6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。 因式分解教案 篇4课型 复习课 教法 讲练结合 教学目标(知识、能力、教育) 1.了解分解因式的意义,会用提公因式法、 平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数). 2.通过乘法公式 , 的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力 教学重点 掌握用提取公因式法、公式法分解因式 教学难点 根据题目的形式和特征 恰当选择方法进行分解,以提高综合解题能力。 教学媒体 学案 教学过程 一:【 课前预习】 (一):【知识梳理】 1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式. 2.分解困式的方法: ⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:平方差公式: ; 完全平方公式: ; 3.分解因式的步骤: (1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解. (2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。 4.分解因式时常见的思维误区: 提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等 (二):【课前练习】 1.下列各组多项式中没有公因式的是( ) A.3x-2与 6x2-4x B.3(a-b)2与11(b-a)3 C.mxmy与 nynx D.aba c与 abbc 2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因式的是() 4. 分解因式:x2+2xy+y2-4 =_____ 5. 分解因式:(1) ; (2) ;(3) ; (4) ;(5)以上三题用了 公式 二:【经典考题剖析】 1. 分解因式: (1) ;(2) ;(3) ;(4) 分析:①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要 注意字母,字母可能是单项式也可能是多项式,一次提尽。 ②当某项完全提出后,该项应为1 ③注意 , ④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4 )分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。 2. 分解因式:(1) ;(2) ;(3) 分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。 3. 计算:(1) (2) 分析:(1)此题先分解因式后约分,则余下首尾两数。 (2)分解后,便有规可循,再求1到20xx的和。 4. 分解因式:(1) ;(2) 分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法, 5. (1)在实数范围内分解因式: ; (2)已知 、 、 是△ABC的三边,且满足 , 求证:△ABC为等边三角形。 分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证 , 从已知给出的等式结构看出,应构造出三个完全平方式 , 即可得证,将原式两边同乘以2即可。略证: 即△ABC为等边三角形。 三:【课后训练】 1. 若 是一个完全平方式,那么 的值是( ) A.24 B.12 C.12 D.24 2. 把多项式 因式分解的结果是( ) A. B. C. D. 3. 如果二次三项式 可分解为 ,则 的 值为( ) A .-1 B.1 C. -2 D.2 4. 已知 可以被在60~70之间的两个整数整除,则这两个数是( ) A.61、63 B.61、65 C.61、67 D.63、65 5. 计算:19982002= , = 。 6. 若 ,那么 = 。 7. 、 满足 ,分解因式 = 。 8. 因式分解: (1) ;(2) (3) ;(4) 9. 观察下列等式: 想一想,等式左边各项幂的底数与右边幂的底数有何关 系?猜一猜可引出什么规律?用等式将其规律表示出来: 。 10. 已知 是△ABC的三边,且满足 ,试判断△ABC的形状。阅读下面解题过程: 解:由 得: ① ② 即 ③ △ABC为Rt△。 ④ 试问:以上解题过程是否正确: ;若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题结论应为 。 四:【课后小结】 布置作业 地纲 因式分解教案 篇5教学目标 教学知识点 使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。 潜力训练要求。 透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。 情感与价值观要求。 透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。 教学重点 1、理解因式分解的好处。 2、识别分解因式与整式乘法的关系。 教学难点透过观察,归纳分解因式与整式乘法的关系。 教学方法观察讨论法 教学过程 Ⅰ、创设问题情境,引入新课 导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b) Ⅱ、讲授新课 1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。 993-99=99×98×100 2、议一议 你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。 3、做一做 (1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________; ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________ (2)根据上面的算式填空: ①3x2-3x=()();②m2-16=()();③ma+mb+mc=()(); ④y2-6y+9=()2。⑤a3-a=()()。 定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。 4。想一想 由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗? 下面我们一齐来总结一下。 如:m(a+b+c)=ma+mb+mc(1) ma+mb+mc=m(a+b+c)(2) 5、整式乘法与分解因式的联系和区别 ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。 6。例题下列各式从左到右的变形,哪些是因式分解? (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x); (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。 Ⅲ、课堂练习 P40随堂练习 Ⅳ、课时小结 本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。