标题 | 高中数学教案设计 |
范文 | 高中数学教案设计 作为一名优秀的教育工作者,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?下面是小编整理的高中数学教案设计,欢迎阅读,希望大家能够喜欢。 高中数学教案设计1一、教学内容分析 向量作为工具在数学、物理以及实际生活中都有着广泛的应用。 本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用。 二、教学目标设计 1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路。 2、了解构造法在解题中的运用。 三、教学重点及难点 重点:平面向量知识在各个领域中应用。 难点:向量的构造。 四、教学流程设计 五、教学过程设计 (一)、复习与回顾 1、提问:下列哪些量是向量? (1)力(2)功(3)位移(4)力矩 2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么? [说明]复习数量积的有关知识。 (二)、学习新课 例1(书中例5) 向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看 例2(书中例3) 证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立。 证法(二)向量法 [说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是) 例3(书中例4) [说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明。 (三)、巩固练习 1、如图,某人在静水中游泳,速度为km/h。 (1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少? 答案:沿北偏东方向前进,实际速度大小是8 km/h。 (2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少? 答案:朝北偏西方向前进,实际速度大小为km/h。 (四)、课堂小结 1、向量在物理、数学中有着广泛的应用。 2、要学会从不同的角度去看一个数学问题,是数学知识有机联系。 (五)、作业布置 1、书面作业:课本P73,练习8.4 4 高中数学教案设计2[学习目标] (1)会用坐标法及距离公式证明Cα+β; (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的.关系与相互转化; (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。 [学习重点] 两角和与差的正弦、余弦、正切公式 [学习难点] 余弦和角公式的推导 [知识结构] 1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本) 2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。 3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。 4、关于公式的正用、逆用及变用 高中数学教案设计3一、教学目标: 掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 二、教学重点: 向量的性质及相关知识的综合应用。 三、教学过程: (一)主要知识: 1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。 (二)例题分析:略 四、小结: 1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题, 2、渗透数学建模的思想,切实培养分析和解决问题的能力。 五、作业: 略 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。