网站首页  词典首页

请输入您要查询的范文:

 

标题 高三数学《二面角》说课稿
范文

高三数学《二面角》说课稿范文

作为一名为他人授业解惑的教育工作者,通常需要用到说课稿来辅助教学,说课稿有助于提高教师理论素养和驾驭教材的能力。那么大家知道正规的说课稿是怎么写的吗?下面是小编收集整理的高三数学《二面角》说课稿范文,仅供参考,希望能够帮助到大家。

高三数学《二面角》说课稿1

一、教材分析

1、教材地位和作用

二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。

2、教学目标

根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:

认知目标:

(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:以培养学生的创新能力和动手能力为重点。

(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

教育目标:

(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。

(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

3、本节课教学的重、难点是两个过程的教学:

(1)二面角的平面角概念的形成过程。

(2)寻找二面角的平面角的方法的发现过程。

其理由如下:

(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。

(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。

二、指导思想和教学方法

在设计本教学时,主要贯彻了以下两个思想:

1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。

2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。

首先是教材创新。

(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比——猜想——操作——定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。

(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。

(3)重新编排例题。

其次是教法创新。采用多种创新的教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。

这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。

这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。

教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用《几何画板》制作课件来辅助教学;此外,为加强直观教学,教师可预先做好一些模型。

最后是学法创新。意在指导学生会创新地学。

1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、会学:通过自已亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。

三、程序安排

(一)、二面角

1、揭示概念产生背景。

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

问题情境1、我们是如何定量研究两平行平面的相对位置的?

问题情境2、立几中常用距离和角来定量描述两个元素之间的相对位置,为什么不引入两平行平面所成的角?

问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢?

通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。

2、展现概念形成过程。

高三数学《二面角》说课稿2

一、教材简析:

1.地位与作用:

本节是高二数学下册第九章《直线、平面、简单几何体》中相关§96二面角的求解问题。是在立体几何知识学习完毕,学生已具有了一定的空间想象能力,掌握了一定的立体几何的研究方法的基础之上,对二面角求解方法进行的一个补充。二面角的求解是立体几何部分的一个重点也是一个难点,本节内容为学生提供一个新的`视角。

2.教学内容及目标

教学内容:

将异面直线两点间距离公式变形应用于求二面角,变形所得公式就是本节所学主要内容,暂且称这个公式为二面角余弦公式。

教学目标:

知识目标:异面直线两点间距离公式在求二面角中的应用;

能力目标:

(1).推广引申不但能加深对原题的理解,而且对于扩大解题效果,提高解题能力,培养发散思维,激发创新意识,都有不可忽视的积极作用。

(2).通过转化问题探究公式条件的过程,培养学生探索问题的精神,提高学生化归的意识和转化的能力。

情感目标:通过问题的转化过程,让学生认识万物都处于联系之中,我们要用联系的观点看待问题。

3.教学重点和教学难点

重点:二面角余弦公式条件的发现,结构的确定;

难点:二面角余弦公式条件的发现,结构的确定;

二、学情分析:

1.起点能力分析

立体几何知识学习完毕,学生已具有了一定的空间想象能力,掌握了一定的立体几何的研究方法,并成为本节的学习基础。

2.一般特点分析

高二学生观察力已具有一定的目的性、精细性、持久性,有意识记占主导地位、意义识记以占重要地位,同时概念理解能力、推理能力有所提高,具有一定的掌握和运用逻辑法则的能力,但由于认知水平的不同,学生掌握和运用逻辑法则的能力存在不平衡性。

三、教法分析:

本节采用启导法,以质疑启发、直观启发为主,通过一系列带有启发性、思考性的问题,创设问题情境,引导学生思考,教师适时演示,利用多媒体的直观性,激发学生的学习兴趣,化静为动,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。

四、学法指导:

根据学法指导自主性和差异性原则,让学生在“观察——发现——推理——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识,发展思维能力。

五、教学程序

1.教学思路

设疑导入→构建条件→形成公式→公式应用→教学反思。

2.教学环节安排

(一)情境设置

习题1:教科书80页题10

设计意图:由此题与学生共同回顾二面角的定义及其求解方法,并且根据题设条件,由学生发现该二面角的求解由异面直线AC、DB的位置关系来确定,提出为什么异面直线可以确定二面角,异面直线怎样确定二面角呢?引出问题二,从而进入第二环节——探索研究。

(二)探索研究

问题二:

问1:什么是异面直线的公垂线?两异面直线有多少条公垂线?

问2:设异面直线a、b公垂线为l,则a、b、l三条直线可以确定多少个平面?

问3:这两相交平面可以构成两对二面角,这两对二面角大小有什么关系?(设计意图:到此完成由异面直线构造二面角)

问4:从四个二面角任选一个二面角,该二面角的大小与异面直线位置有什么关系?

通过问题的层层深入,让学生自己观察、思考得出异面直线的位置可以确定二面角的大小的结论。再通过教具的演示让学生发现线段AM、BN、AB、MN任意一个的改变都会影响异面直线的位置,说明这四条线段可以共同确定二面角,从而发现公式的结构,突破难点;

问5:令a∩l=A,b∩l=B,M∈a,N∈b且MA=m,NB=n,AB=d,MN=l,求二面角α―l―β。

通过问题5将异面直线的位置量化,由学生自己推导,得出二面角的余弦公式

设计意图:通过问题5设出四条线段的长,求二面角的大小,从做辅助线、确定二面角平面角,到在三角形中计算求值,最后整理解题过程,由学生自主解决,教师适时引导,多问学生为什么,纠正学生语言表达上的错误,提示解题不符逻辑关系的地方,让学生在相互补充,相互找不足的这一自我评价、自我调整过程中,完善推理过程,得出二面角的余弦公式。通过这一数学交流活动,暴露学生的思维过程,提高学生语言表达能力,培养学生合情推理能力,注重学生作为个体发展能力的同时,也注重培养学生协同合作共同探索、的精神。并且让学生体会数学学习不仅重在学习一个结论,而是注重学习的过程,让学生在自己发现结论、自己推得公式中体验成功。

问题三:用问题二的方法求解习题一

设计意图:巩固公式的应用,明确如何应用公式;通过对比公式与习题一的条件,让学生认识到本节所学求二面角的方法是对教科书习题一般化所得的结论,体会数学从“特殊”到“一般”,再从“一般”到“特殊”的研究过程。

问题四:将公式条件中二面角两半平面的线段放到了以棱上线段为公共边的三角形中,作为了两三角形的高。

设计意图:通过这一过程,进一步深化所推公式中量的理解,其作用是半平面用三角形表示,更有利于在柱体或锥体中解决二面角的求解问题;

(三)巩固训练

习题2

1.(改编自教科书80页题11)把长、宽分别为4、3的长方形ABCD沿对角线AC折叠,使BD长为7/5,求二面角B―AC―D。

2.(教科书80页题11)把长、宽分别为4、3的长方形ABCD沿对角线AC折叠成直二面角,求顶点B与D之间的距离。

设计意图:

题1是对问题四结论的简单应用。此题题设是将平面图形折成立体图形,求形成的二面角的大小,巩固平面图形折叠过程中量的变化情况。

题2让学生认识:二面角余弦公式建立了四个线段、一个角五个量间的关系,知道其中任意四个,都可以求第五个量,加深对公式的认识,熟悉公式的变形应用。

习题3:(选自2005年湖南高考题)已知四边形ABCD是上、下底边分别为2和6,高为的等腰梯形,将它沿对称轴OO′折成直二面角,求二面角O―AC―O′的大小。

设计意图:让学生创设公式应用条件,自主解决问题,同时再次巩固立体空间中量的求解用平面解决的思想方法。

(四)总结提炼

1.说明本节所学求二面角方法的可行性;

2.说明本节所学求二面角方法的合理性;

3.本节所学求二面角的方法不是教科书中的定理、公式,因此不能作为已知结论在解答题中应用。但学习重视结果,更注重学习的过程,这节课学习的意义,不是公式本身,而是用已知的知识探究出新的解决问题的方法的过程。

(五)作业

习题4、为必做题,习题5为选做题

设计意图:布置作业有弹性,避免一刀切,将上述思维发散的过程延伸到课后,使学生活跃的思维得以发展,进而形成思维习惯。

总之,在整个课堂教学中,努力挖掘蕴含于知识生成过程中的数学思想方法,有机结合,有意渗透,以培养学生的思维能力。

高三数学《二面角》说课稿3

一、说教材

二面角的概念是普通高中课程标准人教A版数学必修2第2章第3节两个平面垂直的判定中的内容。它是在学生学习了异面直线所称的角、直线与平面所成的角之后,有一个要学习的空间角,而二面角的本质特征时候从度量的角度,通过二面角的平面角揭示了平面与平面的位置关系(垂直关系是其中的一种特殊关系),它是为以后从度量角研究面与面的非垂直关系奠定了基础,因此二面角的内容在教材中起到了一个承上启下的作用,同时,通过本节课的学习,学生的空间想象能力和逻辑思维能力进一步得到提升。

二、说学情

高一学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,针对学生主观能动性强,思维活跃的特点,我在授课中主要以问题为纽带引导学生发现问题—类比联想—解决问题。

三、说教学目标

(一)知识与技能

能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。

(二)过程与方法

利用类比的方法推理二面角的有关概念,提升知识迁移的能力。

(三)情感态度与价值观

营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。

四、说教学重难点

(一)重点

“二面角”和“二面角的平面角”的概念。

(二)难点

“二面角的平面角”概念的形成过程。

五、说教学方法

数学是一门培养人思维,发展人思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境—提出数学问题—尝试解决问题—验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体与模型相结合,将抽象问题形象化,使教学目标体现的更加完美。

六、说教学过程

(一)新课导入

首先我会用多媒体课件展示生活中的一些模型,请学生观察:

1.打开书本的过程;

2.发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;

3.修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;

引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系。

【设计意图】通过一系列的模型与动画展示,从生活中提取模型,让学生由感性认识出发,从多种模型中抽象出二面角的概念,这符合认知的一般规律。同时,也让学生体会到数学来源于生活,也服务于生活,增加学生学习本节内容的兴趣

(二)新课探究

1.二面角的概念

利用多媒体展示初中所学的平面角的形成过程,并向学生提问,可否根据平面内角的定义给上述的这些图形下一个定义。

在提问过程中注意引导学生进行类比,大胆概括。同时,对学生的表现加以肯定,注意规范学生的语言。最后引出二面角的概念。在此要注意讲解半平面的概念,即平面内的一条直线把平面分成两部分,这两部分通常称为半平面。并根据具体模型讲解二面角的棱,面等相关概念。

(1)对比平面角得出二面角的概念

(2)二面角的表示

接下来注意讲解二面角表示法:α-a-β或α-AB-β.在此要注意分析讲解三个量的含义。

二面角的画法

然后是师生同步,练习画二面角。着重练习直立式和平卧式,可请学生同桌之间互相点评,强调平行关系。

2.二面角的平面角

一般地说,量角器只能测量“平面角”让学生大胆猜想如何去测量二面角的大小。学生类比平面角,会想到将空间角化为平面角.

(1)二面角的平面角的定义

教师给出二面角的平面交的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.

教师进一步对定义进行深化,请学生找出“二面角的平面角”的定义三个主要特征,即点在棱上、线在面内、与棱垂直

并通过实物展示让学生认识直二面角。

(2)二面角的平面角的作法

接下来,师生同步,共同作出某一二面角的平面角,注意点P的三种情况:

①点P在棱上—定义法

②点P在一个半平面上—三垂线定理法

③点P在二面角内—垂面法

【设计意图】培养学生的观察能力,学生会发现身边很多的图形都和教师展示的模型一样。同时,这样的教学也符合认识事物的一般规律:由感性认识到理性认识,再到感性认识,再到理性认识。

(三)深化新知

提问二面角的取值范围,强调一般规定为[0,π]。重点要让学生理解0和的区别。

(四)巩固提高

为了让学生切实掌握二面角的概念及其求法,设计两个环节:通过例题讲解让学生学会运用。通过课堂作业,让学生巩固新知。

首先是基础题,利用概念判断命题的真假,如:

(1)两个相交平面组成的图形叫做二面角。

(2)角的两边分别在二面角的两个面内,则这个角是二面角的平面角。

(3)二面角的平面角所在平面垂直于二面角的棱。

【设计意图】通过这几道判断题,巩固学生对二面角概念的理解。

此外我会在添加两道以正方体为模型,求解两个平面的二面角的题目,抽取两位同学在黑板上扮演,我将会在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善,规范的书写格式。

(五)小结作业

教师口头提问:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:以正方体为模型请找出一个所成角度为四十五度的二面角,并证明。

设计意图:利用正方体模型,激发学生的探索欲望,体现分层教学的思想,才能达到因材施教的目的。

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/22 21:49:24