网站首页  词典首页

请输入您要查询的范文:

 

标题 等差数列教学设计
范文

等差数列教学设计

作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。教学设计应该怎么写呢?下面是小编帮大家整理的等差数列教学设计,欢迎大家分享。

等差数列教学设计1

一、教材分析。

1、教学目标:

(1)理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;

(2)培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

(3)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

2、教学重点和难点:

(1)等差数列的概念。

(2)等差数列的通项公式的推导过程及应用。用不完全归纳法推导等差数列的通项公式。

二、教法分析。

采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、教学程序。

本节课的教学过程由:(一)复习引入;(二)新课探究;(三)应用例解;(四)反馈练习;(五)归纳小结;(六)布置作业,六个教学环节构成。

(一)复习引入:

1、全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是cm)分别是21,22,23,24,25。

2、某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56。

3、某长跑运动员7天里每天的训练量(单位:m)是:7500,8000,8500,9000,9500,10000,10500。

共同特点:从第2项起,每一项与前一项的差都等于同一个常数。

(二) 新课探究。

1、给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

(1)“从第二项起”满足条件;

(2)公差d一定是由后项减前项所得;

(3)公差可以是正数、负数,也可以是0。

2、推导等差数列的通项公式:若等差数列{an }的首项是 ,公差是d, 则据其定义可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……进而归纳出等差数列的通项公式:= +(n—1)d

此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:– =d;– =d;– =d……– =d。

将这(n—1)个等式左右两边分别相加,就可以得到 – = (n—1) d即 = +(n—1) d

当n=1时,上面等式两边均为 ,即等式也是成立的,这表明当n∈ 时上面公式都成立,因此它就是等差数列{an }的通项公式。

接着举例说明:若一个等差数列{ }的首项是1,公差是2,得出这个数列的通项公式是: =1+(n—1)×2 , 即 =2n—1 以此来巩固等差数列通项公式运用

(三)应用举例。

这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的 、d、n、 这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

例1 :

(1)求等差数列8,5,2,…的第20项;

(2)—401是不是等差数列—5,—9,—13,…的项?如果是,是第几项?

第二问实际上是求正整数解的问题,而关键是求出数列的通项公式。

例2:

在等差数列{an}中,已知 =10, =31,求首项 与公差d。

在前面例1的基础上将例2当作练习作为对通项公式的巩固。

例3:

梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

(四)反馈练习。

1、小节后的练习中的`第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

2、若数列{ } 是等差数列,若 = k ,(k为常数)试证明:数列{ }是等差数列。

此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

(五)归纳小结 。(由学生总结这节课的收获)

1、等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式 = +(n—1) d会知三求一

(六) 布置作业。

1、必做题:课本P114 习题3。2第2,6 题。

2、选做题:已知等差数列{ }的首项 = —24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

四、板书设计。

在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

等差数列教学设计2

一、教学目标:

1、知识与技能

(1)初步掌握一些特殊数列求其前n项和的常用方法.

(2)通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,转化的数学思想以及数学运算能力。

2、 过程与方法

培养学生分析解决问题的能力,归纳总结能力,以及数学运算的能力。

3、 情感,态度,价值观

通过教学,让学生认识到事物是普遍联系,发展变化的。

二、教学重点:

把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和

三、教学难点

寻找适当的变换方法,达到化归的目的

四、教学过程设计

复习引入:

(1)1+2+3+……+100=

(2) 1+3+5+……+2n-1=

(3) 1+2+4+……+2《数列求和》教学设计及反思=

(4) 《数列求和》教学设计及反思=

设计意图:

让学生回顾旧知,由此导入新课。

[教师过渡]:今天我们学习《数列求和》第二课时,课标要求和学习内容如下:(多媒体课件展示)

导入新课:

[情境创设] (课件展示):

例1:求数列《数列求和》教学设计及反思,…的前《数列求和》教学设计及反思项和

分析:将各项分母通分,显然是行不通的,启发学生能否通过通项的特点,将每一项拆成两项的差,使它们之间能互相抵消很多项。

[问题生成]:请同学们观察否是等差数列或等比数列?

设问:既然不是等差数列,也不是等比数列,那么就不能直接用等差,等比数列的求和公式,请同学们仔细观察一下此数列有何特征

[教师过渡]:对于通项形如《数列求和》教学设计及反思(其中数列《数列求和》教学设计及反思为等差数列)求和时,我们采取裂项相消求和方法

[特别警示] 利用裂项相消求和方法时,抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,才能使裂开的两项差与原通项公式相等.

变式训练:

1、已知数列{ 《数列求和》教学设计及反思 }的前n项和为《数列求和》教学设计及反思,若《数列求和》教学设计及反思,设《数列求和》教学设计及反思,求数列{ 《数列求和》教学设计及反思 }前10和《数列求和》教学设计及反思

说明:例题引伸是教学中常做的一件事,它可以使学生的认识得到“升华”,

发展学生的思维,并起到触类旁通,举一反三的效果

【小结】裂项的目的是为使部分项相互抵消.大多数裂项相消的通项均可表示为bn=《数列求和》教学设计及反思,其中{《数列求和》教学设计及反思 }是公差d不为0的等差数列,则《数列求和》教学设计及反思《数列求和》教学设计及反思)

例2:求和:《数列求和》教学设计及反思

分析:直接算肯定不可行,启发学生能否通过通项的特点进行求解。

[问题生成]:

根据以上例题,观察该例题通项公式的特点。

[教师过渡]:如果{《数列求和》教学设计及反思}是等差数列,《数列求和》教学设计及反思是等比数列,那么求数列《数列求和》教学设计及反思 的前n项和,可用错位相减法.

《数列求和》教学设计及反思

变式训练2、

拓展练习:1、已知函数y=3x2-2x,数列{《数列求和》教学设计及反思 }的前n项和 为sn ,点(n, sn)均在函数y=f(x)的图象上。

(1)、求数列{an}的通项公式;

(2)、设是数列{bn=《数列求和》教学设计及反思 }的前n和《数列求和》教学设计及反思,求使得Tn〈《数列求和》教学设计及反思对所有都成立的最小正整数m。

  五、方法总结:

公式求和:对于等差数列和等比数列的前n项和可直接用求和公式.

拆项重组:利用转化的思想,将数列拆分、重组转化为等差或等比数列求和.

裂项相消:对于通项型如《数列求和》教学设计及反思(其中数列《数列求和》教学设计及反思为等差数列) 的数列,在求和时将每项分裂成两项之差的形式,一般除首末两项或附近几项外,其余各项先后抵消,可较易求出前n项和。

错位相减:若一个数列具备有如下特征:它的各项恰好是由某个等差数列与某个等比数列之对应项相乘所构成的,其求和则用错位相减法 (此法即为等比数列求和公式的推导方法)。

六、作业布置:

课本P49:第8题

七、教学反思

1.我从两个方面设计变式题。其一,横向变化,其二是纵向变化。横向变化是:从公式→例题各个侧面来看求和,让学生开拓了视野,展开丰富的联想:分组求和可分两组,是否还有分三组来解的题?裂项相消法求和有分母裂项求和,是否还有分母有理化进行求和等。纵向变化:条件削弱,问题复杂,难度提升。从具体到抽象,从特殊到一般螺旋式的上升。横向变化,可看出思维变异的多样性。这种思维变异的多样性在今后的学习过程中将要面临的。如何理解这种数学的合理性呢?学生的学习的本质是继承、借鉴、发展、创新,而问题变式教学恰是在有实例的支持下,继承了思维变异的常用技巧,借鉴此技巧、寻求更多的.变异,如分组成三个或更多个的式子求和,使学的思维得到充分的发展,从而取得创新的目的,这就是教学中所要取得的效果。从纵向变化,可看出思维变异的深入性。问题的层层深入,使问题的一般规律掀起盖头,让学生体验了思维向纵深发展的规律。

2.反思求和公式方法的总结,我也发现了种种遗憾.如学生的解法均缺乏根据,但教师赞赏学生这种善于通过类比联想而发现的创造性解法,为了保护学生的积极性和创造性,没有进行否定,而是让学生课下思考,是否妥当?需要研究.又如裂项相消法等,都是由教师提出来的,若是能由学生主动提出就更好了.为此急需加强对学生提出问题的能力的训练和培养,

3.利用课堂教学的机会,有意识地将数学研究的某些思想方法渗透到教学过程中,课堂教学不能单纯传授知识,应在传授知识的同时注重能力的培养、在上述思想的指导下,这堂课的教学过程中,每个例题都让学生体会到通项化归的思想方法。

4.提高课堂教学的实效,加快学生的思维节秦,不拖泥带水,该说的话,要说到点上,要说透,能少说的,就决不多说,尽量挤出时间让学生多练。在例题讲解中,以学生为主,先由学生自行解题,展开讨论及合作学习,充分调动了学生学习数学的热情,提高创新思维的能力。

等差数列教学设计3

本节课是《普通高中课程标准实验教科书·数学5》(北师大版)第一章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.

【教学目标】

1. 知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

【设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18,自然放水每天水位降低2.5,最低降至5.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的'本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

三:举一反三,巩固定义

1.判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1.已知等差数列:8,5,2,…,求第200项?

2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六:反馈练习:教材13页练习1

七:归纳总结:

1.一个定义:

等差数列的定义及定义表达式

2.一个公式:

等差数列的通项公式

3.二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

等差数列教学设计4

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入数学建模的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对数学建模的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析

对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的`问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① 从第二项起满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调同一个常数

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4, d=-1

2. 0.70,0.71,0.72,0.73,0.74 d=0.01

3. 0,0,0,0,0,0, d=0

4. 1,2,3,2,3,4,

5. 1,0,1,0,1,

其中第一个数列公差0, 第二个数列公差0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

2、第二个重点部分为等差数列的通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,

则据其定义可得:

a2 - a1 =d 即: a2 =a1 +d

a3 a2 =d 即: a3 =a2 +d = a1 +2d

a4 a3 =d 即: a4 =a3 +d = a1 +3d

等差数列教学设计5

一、教材分析

1、教材的地位和作用:

《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

重点:

①等差数列的`概念。

②等差数列的通项公式的推导过程及应用。

难点:

①等差数列的通项公式的推导

②用数学思想解决实际问题

二、学情教法分析:

对于高一学生,知识经验已较为丰富,具备了一定的抽象思维能力和演绎推理能力,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学生在初中时只是简单的接触过等差数列,具体的公式还不会用,因些在公式应用上加强学生的理解

三、学法分析:

在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学过程

1.创设情景 提出问题

首先要学生回忆数列的有关概念,数列的两种方法——通项公式和递推公式

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 1:58:05