标题 | 高一数学必修知识点总结 |
范文 | 高一数学必修知识点总结 总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以使我们更有效率,因此,让我们写一份总结吧。总结怎么写才不会千篇一律呢?以下是小编为大家收集的高一数学必修知识点总结,欢迎阅读与收藏。 高一数学必修知识点总结1函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质; (2)图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的 (3).函数单调区间与单调性的判定方法 (A)定义法: (1)任取x1,x2∈D,且x1 (2)作差f(x1)-f(x2);或者做商 (3)变形(通常是因式分解和配方); (4)定号(即判断差f(x1)-f(x2)的正负); (5)下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 8.函数的奇偶性(整体性质) (1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 9.利用定义判断函数奇偶性的步骤: 1首先确定函数的定义域,并判断其是否关于原点对称; 2确定f(-x)与f(x)的关系; 3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定. 10、函数的解析表达式 (1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法 11.函数(小)值 1利用二次函数的性质(配方法)求函数的(小)值 2利用图象求函数的(小)值 3利用函数单调性的判断函数的(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 高一数学必修知识点总结2一、集合及其表示 1、集合的含义: “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。 所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。 2、集合的表示 通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。 有一些特殊的集合需要记忆: 非负整数集(即自然数集)N正整数集N_或N+ 整数集Z有理数集Q实数集R 集合的表示方法:列举法与描述法。 ①列举法:{a,b,c……} ②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1} ③语言描述法:例:{不是直角三角形的三角形} 例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 强调:描述法表示集合应注意集合的代表元素 A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。 3、集合的三个特性 (1)无序性 指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。 例题:集合A={1,2},B={a,b},若A=B,求a、b的值。 解:,A=B 注意:该题有两组解。 (2)互异性 指集合中的元素不能重复,A={2,2}只能表示为{2} (3)确定性 集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。 高一数学必修知识点总结31.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AA ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) ③如果AB,BC,那么AC ④如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集 高一数学必修知识点总结4高一数学集合有关概念 集合的含义 集合的中元素的三个特性: 元素的确定性如:世界上的山 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} 元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_N+整数集Z有理数集Q实数集R 列举法:{a,b,c……} 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2} 语言描述法:例:{不是直角三角形的三角形} Venn图: 4、集合的分类: 有限集含有有限个元素的集合 无限集含有无限个元素的集合 空集不含任何元素的集合例:{x|x2=—5} 高一数学必修知识点总结51、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 【函数的应用】 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 1.最新高一数学知识点5篇总结 2.最新高一数学知识点总结5篇 3.精选最新高一数学知识点总结归纳5篇 4.最全高一数学知识点归纳5篇 5.高一数学知识点大全5篇 高一数学必修知识点总结6空间直角坐标系定义: 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。 1、右手直角坐标系 ①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指; ②已知点的坐标P(x,y,z)作点的方法与步骤(路径法): 沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<> ③已知点的位置求坐标的方法: 过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则(a,b,c)就是点P的坐标。 2、在x轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c)。 在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c)。 3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c); 点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c); 点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c); 点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c); 点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c); 点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c); 点P(a,b,c)关于原点的对称点(-a,-b,-c)。 4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为 5、空间两点间的距离公式 已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特殊点A(x,y,z)到原点O的距离为 6、以C(x0,y0,z0)为球心,r为半径的球面方程为 特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2 高一数学必修知识点总结7集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A?① 任何一个集合是它本身的子集。A B那就说集合A是集合B的真子集,记作A B(或B A)?B,且A?②真子集:如果A C?C ,那么 A?B, B?③如果 A A 那么A=B?B 同时 B?④ 如果A 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) A}?S且 x? x?记作: CSA 即 CSA ={x (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 高一数学必修知识点总结8【基本初等函数】 一、指数函数 (一)指数与指数幂的运算 1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈ 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。 当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2、分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。 3、实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。 注意:指数函数的底数的取值范围,底数不能是负数、零和1。 2、指数函数的图象和性质 高一数学必修知识点总结91.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。 2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。 3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。 4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。 5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。 6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。 7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。 高一数学必修知识点总结10集合间的基本关系 1.子集,A包含于B,记为:,有两种可能 (1)A是B的一部分, (2)A与B是同一集合,A=B,A、B两集合中元素都相同。 反之:集合A不包含于集合B,记作。 如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。 2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) 3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。 4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。 例:集合共有个子集。(13年高考第4题,简单) 练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。 解析: 集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。 集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。 此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。 高一数学必修知识点总结11知识点1 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1、元素的确定性; 2、元素的互异性; 3、元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2、集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2} 4、集合的分类: 1、有限集含有有限个元素的集合 2、无限集含有无限个元素的集合 3、空集不含任何元素的集合例:{x|x2=—5} 知识点2 I、定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II、二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x—h)^2+k[抛物线的顶点P(h,k)] 交点式:y=a(x—x?)(x—x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a III、二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。 IV、抛物线的性质 1、抛物线是轴对称图形。对称轴为直线x=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2、抛物线有一个顶点P,坐标为 P(—b/2a,(4ac—b^2)/4a) 当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。 3、二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 知识点3 1、抛物线是轴对称图形。对称轴为直线 x=—b/2a。 对称轴与抛物线的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2、抛物线有一个顶点P,坐标为 P(—b/2a,(4ac—b’2)/4a) 当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。 3、二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4、一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5、常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6、抛物线与x轴交点个数 Δ=b’2—4ac>0时,抛物线与x轴有2个交点。 Δ=b’2—4ac=0时,抛物线与x轴有1个交点。 Δ=b’2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a) 知识点4 对数函数 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数。 知识点5 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。 3、函数零点的求法: (1)(代数法)求方程的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。 4、二次函数的零点: (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。 (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。 (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。 高一数学必修知识点总结12一:函数模型及其应用 本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。 1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。 2、用函数解应用题的基本步骤是: (1)阅读并且理解题意。(关键是数据、字母的实际意义); (2)设量建模; (3)求解函数模型; (4)简要回答实际问题。 常见考法: 本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。 误区提醒: 1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。 2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。 【典型例题】 例1: (1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的'本息和(不计复利)。 (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。 例2: 某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。 (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。 高一数学必修知识点总结13一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集:N_或N+ 整数集:Z 有理数集:Q 实数集:R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x-3>2},{x|x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等” 即:①任何一个集合是它本身的子集。AíA ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) ③如果AíB,BíC,那么AíC ④如果AíB同时BíA那么A=B 3.不含任何元素的集合叫做空集,记为Φ 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型交集并集补集 定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}。 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作‘A并B’),即AB={x|xA,或xB})。 高一数学必修知识点总结14高一数学必修一知识点 指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_. 当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand). 当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。 注意:当是奇数时,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (二)指数函数及其性质 1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 高一上册数学必修一知识点梳理 空间几何体表面积体积公式: 1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高, 3、a-边长,S=6a2,V=a3 4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc 5、棱柱S-h-高V=Sh 6、棱锥S-h-高V=Sh/3 7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3 8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6 9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2) 11、r-底半径h-高V=πr^2h/3 12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 人教版高一数学必修一知识点梳理 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点: ①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 高一数学必修知识点总结15集合的运算 运算类型交 集并 集补 集 定义域 R定义域 R 值域>0值域>0 在R上单调递增在R上单调递减 非奇非偶函数非奇非偶函数 函数图象都过定点(0,1)函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; 二、对数函数 (一)对数 1.对数的概念: 一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式) 说明:○1 注意底数的限制 ,且 ; ○2 ; ○3 注意对数的书写格式. 两个重要对数: ○1 常用对数:以10为底的对数 ; ○2 自然对数:以无理数 为底的对数的对数 . 指数式与对数式的互化 幂值 真数 = N = b 底数 指数 对数 (二)对数的运算性质 如果 ,且 , , ,那么: ○1 + ; ○2 - ; ○3 . 注意:换底公式: ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论:(1) ;(2) . (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式 (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>10 定义域x>0定义域x>0 值域为R值域为R 在R上递增在R上递减 函数图象都过定点(1,0)函数图象都过定点(1,0) (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第四章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。 即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: ○1 (代数法)求方程 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . (1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点. 5.函数的模型 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。