标题 | 初二数学几何考试题 |
范文 | 初二数学几何考试题 无论是身处学校还是步入社会,我们都不可避免地会接触到试题,借助试题可以更好地考核参考者的知识才能。那么问题来了,一份好的试题是什么样的呢?下面是小编收集整理的初二数学几何考试题,仅供参考,大家一起来看看吧。 1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。 证明:(1)在矩形ABCD中,AC,BD为对角线, ∴AO=OD=OB=OC ∴∠DAO=∠ADO=∠CBO=∠BCO ∵E,F为OA,OB中点 ∴AE=BF=1/2AO=1/2OB ∵AD=BC, ∠DAO=∠CBO,AE=BF ∴△ADE≌△BCF (2)过F作MN⊥DC于M,交AB于N ∵AD=4cm,AB=8cm ∴BD=4根号5 ∵BF:BD=NF:MN=1:4 ∴NF=1,MF=3 ∵EF为△AOB中位线 ∴EF=1/2AB=4cm ∵四边形DCFE为等腰梯形 ∴MC=2cm ∴FC=根号13cm。 2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm。 (1)求证:四边形ABFE是等腰梯形; (2)求AE的长。 (1)证明:过点D作DM⊥AB, ∵DC∥AB,∠CBA=90°, ∴四边形BCDM为矩形. ∴DC=MB. ∵AB=2DC, ∴AM=MB=DC. ∵DM⊥AB, ∴AD=BD. ∴∠DAB=∠DBA. ∵EF∥AB,AE与BF交于点D,即AE与FB不平行, ∴四边形ABFE是等腰梯形. (2)解:∵DC∥AB, ∴△DCF∽△BAF。 ∴CD AB =CF AF =1 2。 ∵CF=4cm, ∴AF=8cm。 ∵AC⊥BD,∠ABC=90°, 在△ABF与△BCF中, ∵∠ABC=∠BFC=90°, ∴∠FAB+∠ABF=90°, ∵∠FBC+∠ABF=90°, ∴∠FAB=∠FBC, ∴△ABF∽△BCF,即BF CF =AF BF , ∴BF2=CFAF. ∴BF=4 2 cm. ∴AE=BF=4 2 cm. 3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q, (1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等?并证明你的结论 解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形 ∴BC=CD=DE=AB=6,BG∥DE ∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED ∴△ABP∽△ADE ∴BP DE =AB AD∴BP=AB AD DE=6 18 ×6=2; (2) ∵菱形ABGH、BCFG、CDEF是全等的菱形 ∴AB=BC=EF=FG ∴AB+BC=EF+FG ∴AC=EG ∵AD∥HE ∴∠1=∠2 ∵BG∥CF ∴∠3=∠4 ∴△EGP≌△ACQ。 4,已知点E,F在三角形ABC的边AB所在的`直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 4 请你就1,2,3的结论,选择一种情况给予证明 解:(1)∵FH∥EG∥AC, ∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC. ∴BF/FH=BE/EG=BA/AC ∴BF+BE/FH+EG=BA/AC 又∵BF=EA, ∴EA+BE/FH+EG=AB/AC ∴AB/FH+EG=AB/AC. ∴AC=FH+EG. (2)线段EG、FH、AC的长度的关系为:EG+FH=AC. 证明(2):过点E作EP∥BC交AC于P, ∵EG∥AC, ∴四边形EPCG为平行四边形. ∴EG=PC. ∵HF∥EG∥AC, ∴∠F=∠A,∠FBH=∠ABC=∠AEP. 又∵AE=BF, ∴△BHF≌△EPA. ∴HF=AP. ∴AC=PC+AP=EG+HF. 即EG+FH=AC. 5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离。 解:连接AB,同时连接OC并延长交AB于E, 因为夹子是轴对称图形,故OE是对称轴, ∴OE⊥AB,AE=BE, ∴Rt△OCD∽Rt△OAE, ∴OC:OA = CD:AE ∵OC=OD+CD ∴OC =26,∴AE= =15,∵AB=2AE ∴ AB =30(mm)。(8分) 答:AB两点间的距离为30mm。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。