标题 | 高中数学必修5教案 |
范文 | 高中数学必修5教案 作为一名人民教师,就不得不需要编写教案,借助教案可以更好地组织教学活动。那么写教案需要注意哪些问题呢?以下是小编为大家收集的高中数学必修5教案,欢迎阅读,希望大家能够喜欢。 高中数学必修5教案1教学准备 教学目标 1.数列求和的综合应用 教学重难点 2.数列求和的综合应用 教学过程 典例分析 3.数列{an}的前n项和Sn=n2-7n-8, (1)求{an}的通项公式 (2)求{|an|}的前n项和Tn 4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99= 5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|= 6.数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求{an}的通项公式 (2)令bn=anxn ,求数列{bn}前n项和公式 7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数 8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值 .已知数列{an},an∈N,Sn= (an+2)2 (1)求证{an}是等差数列 (2)若bn= an-30 ,求数列{bn}前n项的最小值 0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N) (1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列 (2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn. 11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元) 12 .某商品在最近100天内的价格f(t)与时间t的 函数关系式是f(t)= 销售量g(t)与时间t的函数关系是 g(t)= -t/3 +109/3 (0≤t≤100) 求这种商品的日销售额的最大值 注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值 高中数学必修5教案2(一)课标要求 本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标: (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 (2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。 (二)编写意图与特色 1.数学思想方法的重要性 数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。 本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。 教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。 2.注意加强前后知识的联系 加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。 本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。 《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容, 位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。 在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.” 3.重视加强意识和数学实践能力 学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。 (三)教学内容及课时安排建议 1.1正弦定理和余弦定理(约3课时) 1.2应用举例(约4课时) 1.3实习作业(约1课时) (四)评价建议 1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的'证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。 2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。 高中数学必修5教案3教学目标 1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。 2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。 3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。 教学重难点 1、基本不等式成立时的三个限制条件(简称一正、二定、三相等); 2、利用基本不等式求解实际问题中的最大值和最小值。 教学过程 一、创设情景,提出问题; 设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。 [问]你能在这个图中找出一些相等关系或不等关系吗? 本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式 在此基础上,引导学生认识基本不等式。 三、理解升华: 1、文字语言叙述: 两个正数的算术平均数不小于它们的几何平均数。 2、联想数列的知识理解基本不等式 已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系? 两个正数的等差中项不小于它们正的等比中项。 3、符号语言叙述: 4、探究基本不等式证明方法: [问]如何证明基本不等式? (意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。) 方法一:作差比较或由 展开证明。 方法二:分析法(完成课本填空) 设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、 动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。 点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法. 5、探究基本不等式的几何意义: 借助初中阶段学生熟知的几何图形,引导学生 几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。 四、探究归纳 下列命题中正确的是 结论: 若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值; 若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。 简记为:“一正、二定、三相等”。 五、领悟练习: 公式应用之二:(最优化问题) 设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中 (1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少? (2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少? 六、反思总结,整合新知: 通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要 请教? 设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平. 老师根据情况完善如下: 两种思想:数形结合思想、归纳类比思想。 三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等” 高中数学必修5教案4教学准备 教学目标 进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式。 教学重难点 教学重点:熟练运用定理。 教学难点:应用正、余弦定理进行边角关系的相互转化。 教学过程 一、复习准备: 1、写出正弦定理、余弦定理及推论等公式。 2、讨论各公式所求解的三角形类型。 二、讲授新课: 1、教学三角形的解的讨论: ①出示例1:在△ABC中,已知下列条件,解三角形。 分两组练习→讨论:解的个数情况为何会发生变化? ②用如下图示分析解的情况。(A为锐角时) ②练习:在△ABC中,已知下列条件,判断三角形的解的情况。 2、教学正弦定理与余弦定理的活用: ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。 分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角。 ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型。 分析:由三角形的什么知识可以判别?→求最大角余弦,由符号进行判断 ③出示例4:已知△ABC中,,试判断△ABC的形状。 分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边? 3、 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化。 三、巩固练习: 3、作业:教材P11 B组1、2题。 高中数学必修5教案5一、概述 教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式 二、教学目标分析 1. 知识目标 1) 2) 掌握等比数列的定义 理解等比数列的通项公式及其推导 2.能力目标 1)学会通过实例归纳概念 2)通过学习等比数列的通项公式及其推导学会归纳假设 3)提高数学建模的能力 3、情感目标: 1)充分感受数列是反映现实生活的模型 2)体会数学是来源于现实生活并应用于现实生活 3)数学是丰富多彩的而不是枯燥无味的 三、教学对象及学习需要分析 1、 教学对象分析: 1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。 2)对归纳假设较弱,应加强这方面教学 2、学习需要分析: 四. 教学策略选择与设计 1.课前复习 1)复习等差数列的概念及通向公式 2)复习指数函数及其图像和性质 2.情景导入 高中数学必修5教案6一、教材分析 《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。 二、教学目标 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标: 知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。 能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。 情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。 三、教学重难点 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 四、教法分析 依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。 五、教学过程 本节知识教学采用发生型模式: 1、问题情境 有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道? 可将问题数学符号化,抽象成数学图形。即已知AC=1500m,∠C=450,∠B=300。求AB=? 此题可运用做辅助线BC边上的高来间接求解得出。 提问:有没有根据已提供的数据,直接一步就能解出来的方法? 思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢? 2、归纳命题 我们从特殊的三角形直角三角形中来探讨边与角的数量关系: 在如图Rt三角形ABC中,根据正弦函数的定义 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。