标题 | 高中数学说课稿 |
范文 | 有关高中数学说课稿模板(通用10篇) 在教学工作者实际的教学活动中,通常会被要求编写说课稿,借助说课稿我们可以快速提升自己的教学能力。那么什么样的说课稿才是好的呢?下面是小编整理的高中数学说课稿,希望对大家有所帮助。 高中数学说课稿 篇1一、教材分析: 1.教材所处的地位和作用: 本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。 2.教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: 知识与能力: (1)了解柱体、锥体、台体的表面积. (2)能用公式求柱体、锥体、台体的表面积。 (3)培养学生空间想象能力和思维能力 过程与方法: 让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。 情感、态度与价值观: 通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。 3.重点,难点以及确定依据: 本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点 教学重点:柱,锥,台的表面积公式的推导 教学难点:柱,锥,台展开图与空间几何体的转化 二、教法分析 1.教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。 2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 三.学情分析 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散 (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 四、教学过程分析 (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性 (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。 (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。 (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。 (5)例题及练习,见学案。 (6)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, (7)小结。让学生总结本节课的收获。老师适时总结归纳。 高中数学说课稿 篇2一、地位作用 数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。 基于此,设计本节的数学思路上: 利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。 二、教学目标 知识目标: 1)理解等比数列的概念 2)掌握等比数列的通项公式 3)并能用公式解决一些实际问题 能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。 三、教学重点 1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点 2)等比数列的通项公式的推导及应用 四、教学难点 “等比”的理解及利用通项公式解决一些问题。 五、教学过程设计 (一)预习自学环节。(8分钟) 首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。 回答下列问题 1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。 2)观察以下几个数列,回答下面问题: 1, , , ,…… -1,-2,-4,-8…… 1,2,-4,8…… -1,-1,-1,-1,…… 1,0,1,0…… ①有哪几个是等比数列?若是公比是什么? ②公比q为什么不能等于零?首项能为零吗? ③公比q=1时是什么数列? ④q>0时数列递增吗?q<0时递减吗? 3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导? 4)等比数列通项公式与函数关系怎样? (二)归纳主导与总结环节(15分钟) 这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。 通过回答问题(1)(2)给出等比数列的定义并强调以下几点: ①定义关键字“第二项起”“常数”; ②引导学生用数学语言表达定义: =q(n≥2); ③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。 ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。 通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。 法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。 法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。 高中数学说课稿 篇3一、教学目标 (一)知识与技能 1、进一步熟练掌握求动点轨迹方程的基本方法。 2、体会数学实验的直观性、有效性,提高几何画板的操作能力。 (二)过程与方法 1、培养学生观察能力、抽象概括能力及创新能力。 2、体会感性到理性、形象到抽象的思维过程。 3、强化类比、联想的方法,领会方程、数形结合等思想。 (三)情感态度价值观 1、感受动点轨迹的动态美、和谐美、对称美。 2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。 二、教学重点与难点 教学重点:运用类比、联想的方法探究不同条件下的轨迹。 教学难点:图形、文字、符号三种语言之间的过渡。 三、教学方法和手段 教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。 教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。 教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。 四、教学过程 1、创设情景,引入课题 生活中我们四处可见轨迹曲线的影子。 演示:这是美丽的城市夜景图。 演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。 演示建筑中也有许多美丽的轨迹曲线。 设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。 2、激发情感,引导探索 靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。 高中数学说课稿 篇4高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。 一、内容分析说明 1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系: (1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。 (2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。 (3)二项式定理是解决某些整除性、近似计算等问题的一种方法。 2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的 试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的 近似值。 二、学校情况与学生分析 (1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。 (2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。 三、教学目标 复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标: 1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。 (2)会运用展开式的通项公式求展开式的特定项。 2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。 (2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。 3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。 四、教学过程 1、知识归纳 (1)创设情景: ①同学们,还记得吗? 、 展开式是什么? ②学生一起回忆、老师板书。 设计意图: ①提出比较容易的问题,吸引学生的注意力,组织教学。 ②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。 (2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书 = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*) ②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。 ③巩固练习 填空 设计意图: ①教给学生记忆的方法,比较分析公式的特点,记规律。 ②变用公式,熟悉公式。 (3) 展开式中各项的系数C , C , C ,… , 称为二项式系数. 展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项. 2、例题讲解 例1求 的展开式的第4项的二项式系数,并求的第4项的系数。 讲解过程 设问:这里 ,要求的第4项的有关系数,如何解决? 学生思考计算,回答问题; 老师指明 ①当项数是4时, ,此时 ,所以第4项的二项式系数是 , ②第4项的系数与的第4项的二项式系数区别。 板书 解:展开式的第4项 所以第4项的系数为 ,二项式系数为 。 选题意图: ①利用通项公式求项的系数和二项式系数; ②复习指数幂运算。 例2 求 的展开式中不含的 项。 讲解过程 设问: ①不含的 项是什么样的项?即这一项具有什么性质? ②问题转化为第几项是常数项,谁能看出哪一项是常数项? 师生讨论 “看不出哪一项是常数项,怎么办?” 共同探讨思路:利用通项公式,列出项数的方程,求出项数。 老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。 板书 解:设展开式的第 项为不含 项,那么 令 ,解得 ,所以展开式的第9项是不含的 项。 因此 。 选题意图: ①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。 ②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。 例3求 的展开式中, 的系数。 解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。 板书 解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。 而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。 所以 的展开式中 的系数为 例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项. 解:展开式中前三项的系数分别为1, , , 由题意得2× =1+ ,得n=8. 设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8. 有理项为T1=x4,T5= x,T9= . 3、课堂练习 1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是 A.6B.12 C.24 D.48 解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24. 答案:C 2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是 A.14 B.14 C.42 D.-42 解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 · (-1)r·x , 当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14. 答案:A 3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答) 解析:∵(x +x )n的展开式中各项系数和为128, ∴令x=1,即得所有项系数和为2n=128. ∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x , 令 =5即r=3时,x5项的系数为C =35. 答案:35 五、课堂教学设计说明 1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。 2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。 六、个人见解 高中数学说课稿 篇5一、教材分析 1、教材内容 本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题. 2、教材所处地位、作用 函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的.数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法. 3、教学目标 (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性 的方法; (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力. (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质. 4、重点与难点 教学重点 (1)函数单调性的概念; (2)运用函数单调性的定义判断一些函数的单调性. 教学难点 (1)函数单调性的知识形成; (2)利用函数图象、单调性的定义判断和证明函数的单调性. 二、教法分析与学法指导 本节课是一节较为抽象的数学概念课,因此,教法上要注意: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性. 2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决. 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达. 4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性. 在学法上: 1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力. 2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃. 高中数学说课稿 篇6一、教材分析: 1、教材的地位与作用: 线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。 2、教学重点与难点: 重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。 难点:在可行域内,用图解法准确求得线性规划问题的最优解。 二、目标分析: 在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。 知识目标: 1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行 域和最优解等概念; 2、理解线性规划问题的图解法; 3、会利用图解法求线性目标函数的最优解. 能力目标: 1、在应用图解法解题的过程中培养学生的观察能力、理解能力。 2、在变式训练的过程中,培养学生的分析能力、探索能力。 3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。 情感目标: 1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。 2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神; 3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。 三、过程分析: 数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节: 1、创设情境,提出问题; 2、分析问题,形成概念; 3、反思过程,提炼方法; 4、变式演练,深入探究; 5、运用新知,解决问题; 6、归纳总结,巩固提高。 1、创设情境,提出问题: 在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。 高中数学说课稿 篇7一、说教材 1、从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要资料,它不仅仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,并且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 2、从学生认知角度看 从学生的思维特点看,很容易把本节资料与等差数列前n项和从公式的构成、特点等方面进行类比,这是进取因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不一样,这对学生的思维是一个突破,另外,对于q=1这一特殊情景,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 3、学情分析 教学对象是刚进入高中的学生,虽然具有必须的分析问题和解决问题的本事,逻辑思维本事也初步构成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,所以片面、不严谨。 4、重点、难点 教学重点:公式的推导、公式的特点和公式的运用。 教学难点:公式的推导方法和公式的灵活运用。 公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。 二、说目标 知识与技能目标: 理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。 过程与方法目标: 经过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维本事和逆向思维的本事。 情感与态度价值观: 经过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。 三、说过程 学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的构成与发展过程,结合本节课的特点,我设计了如下的教学过程: 1、创设情境,提出问题 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我能够满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢 设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的进取性。故事资料紧扣本节课的主题与重点。 此时我问:同学们,你们明白西萨要的是多少粒小麦吗引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。 设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而立刻相减呢在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识构成过程的氛围,突破学生学习的障碍。同时,构成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。 2、师生互动,探究问题 在肯定他们的思路后,我之后问:1,2,22,…,263是什么数列有何特征应归结为什么数学问题呢 探讨1:,记为(1)式,注意观察每一项的特征,有何联系(学生会发现,后一项都是前一项的2倍) 探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现 设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,所以教学中应着力在这儿做文章,从而抓住培养学生的辩证思维本事的良好契机。 经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。教师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢 设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。 3、类比联想,解决问题 这时我再顺势引导学生将结论一般化, 那里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。 设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自我探究公式,从而体验到学习的愉快和成就感。 对不对那里的q能不能等于1等比数列中的公比能不能为1q=1时是什么数列此时sn=(那里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。) 再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来(引导学生得出公式的另一形式) 设计意图:经过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和理解,变为对知识的主动认识,从而进一步提高分析、类比和综合的本事。这一环节十分重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。 4、讨论交流,延伸拓展 (略) 高中数学说课稿 篇8一、教材分析: 1、教材的地位与作用。 本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。 在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。 2、重点与难点。 重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。 难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。 二、目的分析: 知识与技能:掌握用频率预测概率和用列举法求概率方法。 过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。 情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。 三、教法、学法分析: 引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。 四、教学过程分析: 1、引导学生探究 精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。 2、归纳概括 学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。 引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题本事,又让学生明确用列举法求概率这一简便快捷方法的合理性。 3、举例应用 ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。 ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。 4、深化发展 ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。 ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新本事。 高中数学说课稿 篇9一、教学背景分析 (一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用. (二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略. (三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍. 二、教学目标设计 (一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法. (二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力. (三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神. 三、教法学法设计 (一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位. 使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性. 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力; 5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识. 四、教学建议 教材分析 1.知识结构 2.重点难点分析 重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法. 椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的. (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解. 另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性. (2)根据椭圆的定义求标准方程,应注意下面几点: ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁. ②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会. ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项. ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求. (3)两种标准方程的椭圆异同点 中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同. 椭圆的焦点在轴上标准方程中项的分母较大; 椭圆的焦点在轴上标准方程中项的分母较大. 另外,形如中,只要,同号,就是椭圆方程,它可以化为. (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆. 高中数学说课稿 篇10一、教材分析 1、教材所处的地位和作用 奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。 奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。 2、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维本事正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、 3、教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 【知识与技能】 1)能确定一些简单函数的奇偶性。 2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 【过程与方法】 经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。 【情感、态度与价值观】 经过自主探索,体会数形结合的思想,感受数学的对称美。 从课堂反应看,基本上到达了预期效果。 4、教学重点和难点 重点:函数奇偶性的概念和几何意义。 几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。 难点:奇偶性概念的数学化提炼过程。 由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。 二、教法与学法分析 1、教法 根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的进取状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。 2、学法 让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。 三、教学过程 具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。 (一)设疑导入、观图激趣 由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。 用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。 (二)指导观察、构成概念 在这一环节中共设计了2个探究活动。 探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。 在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。 (三)学生探索、领会定义 探究3下列函数图象具有奇偶性吗? 设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点) (四)知识应用,巩固提高 在这一环节我设计了4道题 例1确定下列函数的奇偶性 选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。 例1设计意图是归纳出确定奇偶性的步骤: (1)先求定义域,看是否关于原点对称; (2)再确定f(-x)=-f(x)还是f(-x)=f(x)。 例2确定下列函数的奇偶性: 例3确定下列函数的奇偶性: 例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型? 例4(1)确定函数的奇偶性。 (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗? 例4设计意图加强函数奇偶性的几何意义的应用。 在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。 (五)总结反馈 在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。 在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。 (六)分层作业,学以致用 必做题:课本第36页练习第1-2题。 选做题:课本第39页习题1、3A组第6题。 思考题:课本第39页习题1、3B组第3题。 设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。