网站首页  词典首页

请输入您要查询的范文:

 

标题 高三数学幂函数与二次函数的复习题
范文

关于高三数学幂函数与二次函数的复习题

形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是高考数学复习幂函数与二次函数专题检测,请大家仔细进行检测。

一、选择题

1.(2013宝鸡模拟)已知m2,点(m-1,y1),(m,y2),(m+1,y3)都在二次函数y=x2-2x的图像上,则( )

(A)y1ca (B)ac

(C)cb (D)ab

6.设abc0,二次函数f(x)=ax2+bx+c的图像可能是( )

7.函数f(x)=ax2+(a-3)x+1在区间[-1,+)上是减少的,则实数a的取值范围是( )

(A)[-3,0)

(B)(-,-3]

(C)[-2,0]

(D)[-3,0]

8.(2013安庆模拟)设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数是( )

(A)1

(B)2

(C)3

(D)4

9.(2013南昌模拟)设b0,二次函数y=ax2+bx+a2-1的图像为下列之一.

则a的值为( )

(A)1

(B)2

(C)-1

(D)-2

10.(能力挑战题)若不等式x2+ax+10对于一切x(0,]恒成立,则a的最小值是( )

(A)0 

(B)2 

(C)-1 

(D)-3

二、填空题

11.若二次函数f(x)=(x+a)(bx+2a)(a,bR)是偶函数,且它的值域为(-,4],则该函数的解析式f(x)= .

12.(2013上饶模拟)已知关于x的方程x2+a|x|+a2-9=0只有一个实数解,则实数a的值为.

13.二次函数f(x)的二次项系数为正,且对任意x恒有f(2+x)=f(2-x),若f(1-2x2)0,则实数a的取值范围是.

三、解答题

15.(能力挑战题)已知二次函数f(x)=ax2+bx(a,b为常数,且a0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.

(1)求f(x)的解析式.

(2)是否存在实数m,n(m2,

1(,

由函数y=()x在R上是减函数知((,

ab.

6.【解析】选D.对于选项A,C,都有abc0,故排除A,C.对于选项B,D,都有-0,即ab0,则当c0时,abc0.

7.【解析】选D.当a=0时,f(x)=-3x+1显然成立,

当a0时,需解得-30,

综上可得-30.

【误区警示】本题易忽视a=0这一情况而误选A,失误的原因是将关于x的函数误认为是二次函数.

8.【解析】选C.由f(-4)=f(0),f(-2)=-2得

f(x)=

当x0时,由f(x)=x得x2+4x+2=x,

解得x=-2或x=-1.

当x0时,由f(x)=x得x=2.

故关于x的方程f(x)=x的解的'个数是3个.

9.【解析】选C.由b0知,二次函数对称轴不是y轴,结合二次函数的开口方向及对称轴位置,二次函数图像是第③个.从而a2-1=0且a0,a=-1.

10.【解析】选C.方法一:设g(a)=ax+x2+1,

∵x(0,],g(a)为增加的.

当x=时满足:a++10即可,解得a-.

方法二:由x2+ax+10得a-(x+)在x(0,]上恒成立,

令g(x)=-(x+),则知g(x)在(0,]上是增加的,

g(x)max=g()=-,a-.

11.【思路点拨】化简f(x),函数f(x)为偶函数,则一次项系数为0可求b.值域为(-,4],则最大值为4,可求2a2,即可求出解析式.

【解析】∵f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2是偶函数,则其图像关于y轴对称.

2a+ab=0,b=-2或a=0(舍去).

f(x)=-2x2+2a2,又f(x)的值域为(-,4],

2a2=4,f(x)=-2x2+4.

答案:-2x2+4

12.【解析】设f(x)=x2+a|x|+a2-9,

则f(-x)=(-x)2+a|-x|+a2-9

=x2+a|x|+a2-9=f(x),

即函数f(x)是偶函数.

由题意知,f(0)=0,则a2-9=0,

a=3或a=-3,

经检验a=3符合题意,a=-3不合题意,故a=3.

答案:3

13.【思路点拨】由题意知二次函数的图像开口向上,且关于直线x=2对称,则距离对称轴越远,函数值越大,依此可转化为不等式问题.

【解析】由f(2+x)=f(2-x)知x=2为对称轴,由于二次项系数为正的二次函数中距对称轴越远函数值越大,|1-2x2-2||1+2x-x2-2|,

即|2x2+1||x2-2x+1|,

2x2+10的否定为:对于区间[0,1]内的任意一个x都有f(x)0.

解得a1或a-2.

二次函数在区间[0,1]内至少存在一个实数b,使f(b)0的实数a的取值范围是(-2,1).

答案:(-2,1)

15.【解析】(1)∵f(x)满足f(1+x)=f(1-x),

f(x)的图像关于直线x=1对称.

而二次函数f(x)的对称轴为x=-,

-=1 ①

又f(x)=x有等根,即ax2+(b-1)x=0有等根,

=(b-1)2=0 ②

由①②得b=1,a=-,f(x)=-x2+x.

(2)∵f(x)=-x2+x=-(x-1)2+.

如果存在满足要求的m,n,则必须3n,

n.

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/24 10:14:05